多学习 > 教案下载 > 数学教案 > 高中数学教案 > 高一数学教案 > 下学期 4.8 正弦函数、余弦函数的图像和性质2

下学期 4.8 正弦函数、余弦函数的图像和性质2

更新时间:2025-08-12 11:34:15

4.8 正弦函数、余弦函数的图像和性质(第二课时)

(一)教学具准备

直尺,投影仪.

(二)教学目标 

1.掌握,的定义域、值域、最值、单调区间.

2.会求含有、的三角式的定义域.

(三)教学过程 

1.设置情境

研究函数就是要讨论一些性质,,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.

2.探索研究

师:同学们回想一下,研究一个函数常要研究它的哪些性质?

生:定义域、值域,单调性、奇偶性、等等.

师:很好,今天我们就来探索,两条最基本的性质——定义域、值域.(板书课题正、余弦函数的定义域、值域.)

师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.

师:请同学思考以下几个问题:

(1)正弦、余弦函数的定义域是什么?

(2)正弦、余弦函数的值域是什么?

(3)他们最值情况如何?

(4)他们的正负值区间如何分?

(5)的解集如何?

师生一起归纳得出:

(1)正弦函数、余弦函数的定义域都是.

(2)正弦函数、余弦函数的值域都是即,,称为正弦函数、余弦函数的有界性.

(3)取最大值、最小值情况:

正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1.

余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.

(4)正负值区间:

()

(5)零点:()

()

3.例题分析

【例1】求下列函数的定义域、值域:

(1);(2);(3).

解:(1),

(2)由()

又∵,∴

∴定义域为(),值域为.

(3)由(),又由

∴定义域为(),值域为.

指出:求值域应注意用到或有界性的条件.

【例2】求下列函数的最大值,并求出最大值时的集合:

(1),;(2),;

(3)(4).

解:(1)当,即()时,取得最大值

∴函数的最大值为2,取最大值时的集合为.

(2)当时,即()时,取得最大值.

∴函数的最大值为1,取最大值时的集合为.

(3)若,,此时函数为常数函数.

若时,∴时,即()时,函数取最大值,

∴时函数的最大值为,取最大值时的集合为.

(4)若,则当时,函数取得最大值.

若,则,此时函数为常数函数.

若,当时,函数取得最大值.

∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.

指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.

思考:此例若改为求最小值,结果如何?

【例3】要使下列各式有意义应满足什么条件?

(1);(2).

解:(1)由,

∴当时,式子有意义.

(2)由,即

∴当时,式子有意义.

4.演练反馈(投影)

(1)函数,的简图是(     )

(2)函数的最大值和最小值分别为(    )

A.2,-2      B.4,0       C.2,0        D.4,-4

(3)函数的最小值是(    )

A.        B.-2         C.         D.

(4)如果与同时有意义,则的取值范围应为(    )

A.     B.     C.     D.或

(5)与都是增函数的区间是(     )

A.,              B.,

C.,         D.,

(6)函数的定义域________,值域________,时的集合为_________.

参考答案:1.B  2.B  3.A 4.C 5.D 

6.;;

5.总结提炼

(1),的定义域均为.

(2)、的值域都是

(3)有界性: 

(4)最大值或最小值都存在,且取得极值的集合为无限集.

(5)正负敬意及零点,从图上一目了然.

(6)单调区间也可以从图上看出.

(五)板书设计 

1.定义域

2.值域

3.最值

4.正负区间

5.零点

例1例2例3

课堂练习

课后思考题:求函数的最大值和最小值及取最值时的集合

提示:

下学期 4.8 正弦函数、余弦函数的图像和性质2.docx

将本文的Word文档下载到电脑保存

推荐等级

相关阅读

相关内容

  • 等比数列的前n项和

    教学目标 1.掌握等比数列前项和公式,并能运用公式解决简单的问题.(1)理解公式的推导过程,体会转化的思想;(2)用方程...

  • 等比数列

    教学目标 1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.(1)正确理解的定义,了解公比的概念,明确一个数...

  • 等差数列的前n项和

    教学目标 1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.(1)了解等差数列前项和的定义,了解逆项相加的原理...

  • 等差数列

    教学目标 1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是的限定条...

  • 数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项.(1)...

  • 第一册已知三角函数值求角

    【教学课题】:已知三角函数值求角【教学目标 】:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角【教学重点...

  • 第一册函数的概念

    教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的...

  • 第一册函数解析式的求法

    总第 课时 课型:复习课 授课时间: 年 月 日教学目标 :让学生了解函数解析式的求法。重点:对f的了解,用多...

  • 第一册等差数列

    §3.2.1等差数列目的:1.要求学生掌握等差数列的概念2.等差数列的通项公式,并能用来解决有关问题。重点:1.要证明数列{an...

  • 第一册正余弦函数的图象

    河南省说课大奖赛教案 高中新教村《数学》第一册(下)§4.8 正弦函数、余弦函数的图象和性质(一)正弦函数、余弦函数的...

  • 第一册数列

    3.1.1数列 教学目标 1.理解数列概念,了解数列和函数之间的关系 2.了解数列的通项公式,并会用通...

  • 第一册函数

    各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。一、教材分析1、 教材的地位和...

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号