更新时间:2025-08-12 11:34:15
4.8 正弦函数、余弦函数的图像和性质(第三课时)
(一)教学具准备
直尺、投影仪.
(二)教学目标
1.理解,的周期性概念,会求周期.
2.初步掌握用定义证明的周期为的一般格式.
(三)教学过程
1.设置情境
自然界里存在着许多周而复始的现象,如地球的自转和公转,物理学中的单摆运动和弹簧振动、圆周运动等.数学里从正弦函数、余弦函数的定义可知,角的终边每转一周又会与原来的位置重合,故,的值也具有周而复始的变化规律.为定量描述这种周而复始的变化规律,今天,我们来学习一个新的数学概念——函数的周期性(板书课题)
2.探索研究
(1)周期函数的定义
引导学生观察下列图表及正弦曲线
0
0
1
0
-1
0
1
0
-1
0
正弦函数值当自变量增加或减少一定的值时,函数值就重复出现.
联想诱导公式,若令则,由这个例子,我们可以归纳出周期函数的定义:
对于函数,如果存在一个非零常数,使得当取定义域内的每一个值时,都有,那么函数叫做周期函数,非零常数叫做这个函数的周期.
如,,…及,…都是正弦函数的周期.
注意:周期函数定义中有两点须重视,一是是常数且不为零;二是等式必须对定义域中的每一个值时都成立.
师:请同学们思考下列问题:①对于函数,有能否说是正弦函数的周期.
生:不能说是正弦函数的周期,这个等式虽成立,但不是对定义域的每一个值都使等式成立,所以不符合周期函数的定义.
②是周期函数吗?为什么
生:若是周期函数,则有非零常数,使,即,化简得,∴(不非零),或(不是常数),故满足非零常数不存在,因而不是周期函数.
思考题:若为的周期,则对于非零整数,也是的周期.(课外思考)
(2)最小正周期的定义
师:我们知道…,,,,…都是正弦函数的周期,可以证明(且)是的周期,其中是的最小正周期.
一般地,对于一个周期函数,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做的最小正周期.
今后若涉及的周期,如果不加特别说明,一般都是指函数的最小正周期.
依据定义,和的最小正周期为.
(3)例题分析
【例1】求下列函数的周期:
(1),;(2),;
(3),.
分析:由周期函数的定义,即找非零常数,使.
解:(1)因为余弦函数的周期是,所以自变量只要并且至少要增加到,余弦函数的值才能重复取得,函数,的值也才能重复取得,从而函数,的周期是.
即,∴
(2)令,那么必须并且只需,且函数,的周期是,就是说,变量只要并且至少要增加到,函数,的值才能重复取得,而所以自变量只要并且至少要增加到,函数值就能重复取得,从而函数,的周期是.
即
∴
(3)令,那么必须并且只需,且函数,的周期是,由于,所以自变量只要并且至少要增加到,函数值才能重复取得,即是能使等式成立的最小正数,从而函数,的周期是.
而
∴
师:从上例可以看出,这些函数的周期仅与自变量的系数有关,其规律如何?你能否求出函数,及函数,(其中,,为常数,且,)的周期?
生:
∴.
同理可求得的周期.
【例2】求证:
(1)的周期为;
(2)的周期为;
(3)的周期为.
分析:依据周期函数定义证明.
证明:(1)
∴的周期为.
(2)
∴的周期为.
(3)
∴的周期为.
3.演练反馈(投影)
(1)函数的最小正周期为( )
A.B.C.D.
(2)的周期是_________
(3)求的最小正周期.
参考答案:
(1)C;(2) ∴
(3)欲求的周期,一般是把三角函数化成易求周期的函数或的形式,然后用公式求最小正周期,而化得的一般思路是“多个化一个,高次化一次”,将所给函数化成单角单函数.
由
4.总结提炼
(1)三角函数所特有的性质是周期性,周期与最小正周期是不同概念,研究三角函数的周期时,如未特别声明,一般是指它的最小正周期.
(2)设,.若为的周期,则必有:①为无限集,②;③在上恒成立.
(3)只有或型的三角函数周期才可用公式,不具有此形式,不能套用.如,就不能说它的周期为.
(四)板书设计
课题
1.周期函数定义
两点注意:
思考问题①
②
2.最小正周期定义
例1
例2
的周期
的周期
练习反馈
总结提炼
思考题:设是定义在上的以2为周期的周期函数,且是偶函数,当时,,求上的表达式
参考答案:
4.8 正弦函数、余弦函数的图像和性质(第一课时)
(一)教学具准备
直尺、圆规、投影仪.
(二)教学目标
1.了解作正、余弦函数图像的四种常见方法.
2.掌握五点作图法,并会用此方法作出上的正弦曲线、余弦曲线.
3.会作正弦曲线的图像并由此获得余弦曲线图像.
(三)教学过程 (可用课件辅助教学)
1.设置情境
引进弧度制以后,就可以看做是定义域为的实变量函数.作为函数,我们首先要关注其图像特征.本节课我们一起来学习作正、余弦函数图像的方法.
2.探索研究
(1)复习正弦线、余弦线的概念
前面我们已经学习过三角函数线的概念及作法,请同学们回忆一下什么叫正弦线?什么叫余弦线?(师画图1)
设任意角的终边与单位圆相交于点,过点作轴的垂线,垂足为,则有向线段叫做角的正弦线,有向线段叫做角的余弦线.
(2)在直角坐标系中如何作点
由单位圆中的正弦线知识,我们只要已知一个角的大小,就能用几何方法作出对应的正弦值的大小来,请同学们思考一下,如何用几何方法在直角坐标系中作出点?
教师引导学生用图2的方法画出点.
我们能否借助上面作点的方法在直角坐标系中作出正弦函数,的图像呢?
①用几何方法作,的图像
我们知道,作函数的图像的步骤是:列表、描点、连结;如果我们用列表法得出各点的坐标,就会因各点的纵坐标都是查三角函数表得到的数值不够精确,使得描点后画出的图像误差也大,为克服这一不足,我们用前面作点的几何方法来描点,从而使图像的精确度有了提高.
(边画图边讲解),我们先作在上的图像,具体分为如下五个步骤:
a.作直角坐标系,并在直角坐标系中轴左侧画单位圆.
b.把单位圆分成12等份(等份越多,画出的图像越精确).过单位圆上的各分点作轴的垂线,可以得到对应于0,,,,…,角的正弦线.
c.找横坐标:把轴上从0到()这一段分成12等分.
d.找纵坐标:将正弦线对应平移,即可指出相应12个点.
e.连线:用平滑的曲线将12个点依次从左到右连接起来,即得,的图像.
②作正弦曲线,的图像.
图为终边相同的角的三角函数值相等,所以函数,,且的图像与函数,的图像的形状完全一样,只是位置不同,于是我们只要将函数,的图像向左、右平移(每次个单位长度),就可以得到正弦函数数,的图像,如图1.
正弦函数,的图像叫做正弦曲线.
③五点法作,的简图
师:在作正弦函数,的图像时,我们描述了12个点,但其中起关键作用的是函数,与轴的交点及最高点和最低点这五个点,你能依次它们的坐标吗?
生:(0,0),,,,
师:事实上,只要指出这五个点,,的图像的形状就基本确定了,以后我们常先找出这五个关键点,然后用光滑的曲线将它们连结起来,就得到函数的简图,这种作图的方法称为“五点法”作图.
④用变换法作余弦函数,的图像
因为,所以,与是同一个函数,即余弦函数的图像可以通过正弦曲线向左平移个长度单位角得到,余弦函数的图像叫做余弦曲线,如图2,师:请同学们说出在函数,的图像上,起关键作用的五个点的坐标.
生:(0,1),,,,
3.例题分析
【例1】画出下列函数的简图:
(1),;
(2),.
解:(1)按五个关键点列表
0
0
1
0
-1
0
1
2
1
0
1
利用五点法作出简图3
师:请说出函数与的图像之间有何联系?
生:函数,的图像可由,的图像向上平移1个单位得到.
(2)按五个关键点列表
0
1
0
-1
0
1
-1
0
1
0
-1
利用五点法作出简图4
师:,与,的图像有何联系?
生:它们的图像关于轴对称.
练习:
(1)说出,的单调区间;
(2)说出,的奇偶性.
参考答案:(1)由,图像知、,为其单调递增区间,为其单调递减区间
(2)由,图像知是偶函数.
4.总结提炼
(1)本课介绍了四种作,图像的方法,其中五点作图法最常用,要牢记五个关键点的选取特点.
(2)用平移诱变法,由这不是新问题,在函数一章学习平移作图时,就使用过,请同学们作比较.应该说明的是由平移量是不惟一的,方向也可左可右.
5.演练反馈,(投影)
(1)在同一直角坐标系下,用五点法分别作出下列函数的图像
①,②,
(2)观察正弦曲线和余弦曲线,写出满足下列条件的的区间.
①,②,③,④
(3)画出下列函数的简图
①, ②, ③,
参考答案:
(1)
(2)①,, ②、,
③ ④
(3)
(五)板书设计
课题
1.正、余弦函数线
2.作点
3.作,的图像
4.五点法作正弦函数图像
5.变换法作的图像
6.五点法作余弦函数图像
7.例题
(1)
(2)
演练反馈
总结提炼
返回
4.8 正弦函数、余弦函数的图像和性质(第二课时)
(一)教学具准备
直尺,投影仪.
(二)教学目标
1.掌握,的定义域、值域、最值、单调区间.
2.会求含有、的三角式的定义域.
(三)教学过程
1.设置情境
研究函数就是要讨论一些性质,,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.
2.探索研究
师:同学们回想一下,研究一个函数常要研究它的哪些性质?
生:定义域、值域,单调性、奇偶性、等等.
师:很好,今天我们就来探索,两条最基本的性质——定义域、值域.(板书课题正、余弦函数的定义域、值域.)
师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.
师:请同学思考以下几个问题:
(1)正弦、余弦函数的定义域是什么?
(2)正弦、余弦函数的值域是什么?
(3)他们最值情况如何?
(4)他们的正负值区间如何分?
(5)的解集如何?
师生一起归纳得出:
(1)正弦函数、余弦函数的定义域都是.
(2)正弦函数、余弦函数的值域都是即,,称为正弦函数、余弦函数的有界性.
(3)取最大值、最小值情况:
正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1.
余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.
(4)正负值区间:
()
(5)零点:()
()
3.例题分析
【例1】求下列函数的定义域、值域:
(1);(2);(3).
解:(1),
(2)由()
又∵,∴
∴定义域为(),值域为.
(3)由(),又由
∴
∴定义域为(),值域为.
指出:求值域应注意用到或有界性的条件.
【例2】求下列函数的最大值,并求出最大值时的集合:
(1),;(2),;
(3)(4).
解:(1)当,即()时,取得最大值
∴函数的最大值为2,取最大值时的集合为.
(2)当时,即()时,取得最大值.
∴函数的最大值为1,取最大值时的集合为.
(3)若,,此时函数为常数函数.
若时,∴时,即()时,函数取最大值,
∴时函数的最大值为,取最大值时的集合为.
(4)若,则当时,函数取得最大值.
若,则,此时函数为常数函数.
若,当时,函数取得最大值.
∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.
指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.
思考:此例若改为求最小值,结果如何?
【例3】要使下列各式有意义应满足什么条件?
(1);(2).
解:(1)由,
∴当时,式子有意义.
(2)由,即
∴当时,式子有意义.
4.演练反馈(投影)
(1)函数,的简图是( )
(2)函数的最大值和最小值分别为( )
A.2,-2 B.4,0 C.2,0 D.4,-4
(3)函数的最小值是( )
A. B.-2 C. D.
(4)如果与同时有意义,则的取值范围应为( )
A. B. C. D.或
(5)与都是增函数的区间是( )
A., B.,
C., D.,
(6)函数的定义域________,值域________,时的集合为_________.
参考答案:1.B 2.B 3.A 4.C 5.D
6.;;
5.总结提炼
(1),的定义域均为.
(2)、的值域都是
(3)有界性:
(4)最大值或最小值都存在,且取得极值的集合为无限集.
(5)正负敬意及零点,从图上一目了然.
(6)单调区间也可以从图上看出.
(五)板书设计
1.定义域
2.值域
3.最值
4.正负区间
5.零点
例1
例2
例3
课堂练习
课后思考题:求函数的最大值和最小值及取最值时的集合
提示:
将本文的Word文档下载到电脑保存
推荐等级教学目标 1.掌握等比数列前项和公式,并能运用公式解决简单的问题.(1)理解公式的推导过程,体会转化的思想;(2)用方程...
教学目标 1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.(1)正确理解的定义,了解公比的概念,明确一个数...
教学目标 1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.(1)了解等差数列前项和的定义,了解逆项相加的原理...
教学目标 1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是的限定条...
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项.(1)...
【教学课题】:已知三角函数值求角【教学目标 】:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角【教学重点...
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的...
总第 课时 课型:复习课 授课时间: 年 月 日教学目标 :让学生了解函数解析式的求法。重点:对f的了解,用多...
§3.2.1等差数列目的:1.要求学生掌握等差数列的概念2.等差数列的通项公式,并能用来解决有关问题。重点:1.要证明数列{an...
河南省说课大奖赛教案 高中新教村《数学》第一册(下)§4.8 正弦函数、余弦函数的图象和性质(一)正弦函数、余弦函数的...
3.1.1数列 教学目标 1.理解数列概念,了解数列和函数之间的关系 2.了解数列的通项公式,并会用通...
各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。一、教材分析1、 教材的地位和...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号