多学习 > 教案下载 > 数学教案 > 高中数学教案 > 高一数学教案 > 等差数列(精选12篇)

等差数列(精选12篇)

更新时间:2025-08-12 11:34:15

等差数列篇1

教学目标                      1.明确等差中的概念.   2.进一步熟练掌握等差数列的通项公式及推导公式   3.培养学生的应用意识.   教学重点                   等差数列的性质的理解及应用   教学难点                   灵活应用等差数列的定义及性质解决一些相关问题   教学方法                      讲练相结合   教具准备                      投影片2张(内容见下面)教学过程                      (i)复习回顾师:首先回忆一下上节课所学主要内容:1. 等差数列定义:(n≥2)2. 等差数列通项公式:(n≥2)推导公式:(ⅱ)讲授新课师:先来看这样两个例题(放投影片1)例1:在等差数列中,已知,,求首项与公差例2:梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。1. 解:由题意可知解之得即这个数列的首项是-2,公差是3。或由题意可得:即:31=10+7d可求得d=3,再由求得1=-22. 解设表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:a1=33, a12=110,n=12∴,即时10=33+11解之得:因此,答:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm.师:[提问]如果在与中间插入一个数a,使,a,成等差数列数列,那么a应满足什么条件?生:由定义得a-=-a即:反之,若,则a-=-a师:由此可可得:成等差数列,若,a,成等差数列,那么a叫做与的等差中项。不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。如数列:1,3,5,7,9,11,13…中5是否和风细雨的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,从而可得在一等差数列中,若m+n=p+q则,生:结合例子,熟练掌握此性质师:再来看例3。(放投影片2)生:思考例题例3:已知数列的通项公式为:分析:由等差数列的定义,要判定是不是等差数列,只要看(n≥2)是不是一个与n无关的常数。解:取数列中的任意相邻两项与(n≥2),则:它是一个与n无关的常数,所以是等差数列。在中令n=1,得:,所以这个等差数列的首项是p=q,公差是p.看来,等差数列的通项公式可以表示为:,其中、是常数。(ⅲ)课堂练习生:(口答)(书面练习)师:给出答案生:自评练习(ⅳ)课时小结师:本节主要概念:等差中项另外,注意灵活应用等差数列定义及通项公式解决相关问题。(ⅴ)课后作业一、课本二、1.预习内容   2.预习提纲:①等差数列的前n项和公式;②等差数列前n项和的简单应用。教学后记                 

等差数列篇2

教学目标

1.理解等差数列的概念,把握等差数列的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判定一个数列是等差数列,了解等差中项的概念;

(2)正确熟悉使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;

(3)能通过通项公式与图像熟悉等差数列的性质,能用图像与通项公式的关系解决某些问题.

2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.

3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透非凡与一般的辩证唯物主义观点.

关于等差数列的教学建议

(1)知识结构

(2)重点、难点分析

①教学重点是等差数列的定义和对通项公式的熟悉与应用,等差数列是非凡的数列,定义恰恰是其非凡性、也是本质属性的准确反映和高度概括,准确把握定义是正确熟悉等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

(3)教法建议

①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.

②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作预备.假如学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.

③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.

④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项可看作项数的一次型()函数,这与其图像的外形相对应.

⑤有穷等差数列的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷等差数列的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.

⑥等差数列前项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的爱好.

⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

等差数列通项公式的教学设计示例

教学目标

1.通过教与学的互动,使学生加深对等差数列通项公式的熟悉,能参与编拟一些简单的问题,并解决这些问题;

2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

3.通过参与编题解题,激发学生学习的爱好.

教学重点,难点

教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

研探式.

教学过程

一.复习提问

前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

二.主体设计

通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

1.方程思想的运用

(1)已知等差数列中,首项,公差,则-397是该数列的第______项.

(2)已知等差数列中,首项,则公差

(3)已知等差数列中,公差,则首项

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

2.基本量方法的使用

(1)已知等差数列中,,求的值.

(2)已知等差数列中,,求.

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

如:已知等差数列中,…

由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知等差数列中,求;;;;….

类似的还有

(4)已知等差数列中,求的值.

以上属于对数列的项进行定量的研究,有无定性的判定?引出

3.研究等差数列的单调性

,考察随项数的变化规律.着重考虑的情况.此时是的一次函数,其单调性取决于的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

4.研究项的符号

这是为研究等差数列前项和的最值所做的预备工作.可配备的题目如

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)等差数列从第________项起以后每项均为负数.

三.小结

1.用方程思想熟悉等差数列通项公式;

2.用函数思想解决等差数列问题.

四.板书设计

等差数列通项公式1.方程思想的运用

2.基本量方法的使用

3.研究等差数列的单调性

4.研究项的符号

等差数列篇3

教学目标 

1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

关于的教学建议

(1)知识结构

(2)重点、难点分析

教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

(3)教法建议

①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项可看作项数的一次型()函数,这与其图像的形状相对应.

⑤有穷的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.

⑥前项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

通项公式的教学设计示例

教学目标 

1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

3.通过参与编题解题,激发学生学习的兴趣.

教学重点,难点

教学重点是通项公式的认识;教学难点 是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

研探式.

教学过程 

一.复习提问

前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?

的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

二.主体设计

通项公式反映了项与项数之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

1.方程思想的运用

(1)已知中,首项,公差,则-397是该数列的第______项.

(2)已知中,首项,则公差

(3)已知中,公差,则首项

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

2.基本量方法的使用

(1)已知中,,求的值.

(2)已知中,,求.

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.

教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

如:已知中,…

由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知中,求;;;;….

类似的还有

(4)已知中,求的值.

以上属于对数列的项进行定量的研究,有无定性的判断?引出

3.研究的单调性

,考察随项数的变化规律.着重考虑的情况.此时是的一次函数,其单调性取决于的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

4.研究项的符号

这是为研究前项和的最值所做的准备工作.可配备的题目如

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)从第________项起以后每项均为负数.

三.小结

1.用方程思想认识通项公式;

2.用函数思想解决问题.

四.板书设计 

通项公式 1.方程思想的运用

2.基本量方法的使用

3.研究的单调性

4.研究项的符号

等差数列篇4

教学目的:1.明确等差数列的定义,掌握等差数列的通项公式;  2.会解决知道中的三个,求另外一个的问题          教学重点:等差数列的概念,等差数列的通项公式教学难点:等差数列的性质教学过程:一、复习引入:(课件第一页)  二、讲解新课:      1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。(课件第二页)⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;⑵.对于数列{},若-=d(与n无关的数或字母),n≥2,n∈n,则此数列是等差数列,d为公差。2.等差数列的通项公式:【或】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:即:即:即:……由此归纳等差数列的通项公式可得: (课件第二页)第二通项公式           (课件第二页)三、例题讲解例1⑴求等差数列8,5,2…的第20项(课本p111)⑵-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?例2在等差数列中,已知,,求,,例3将一个等差数列的通项公式输入计算器数列中,设数列的第s项和第t项分别为和,计算的值,你能发现什么结论?并证明你的结论。 小结:①这就是第二通项公式的变形,②几何特征,直线的斜率例4梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3)例5已知数列{}的通项公式,其中、是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)  分析:由等差数列的定义,要判定是不是等差数列,只要看(n≥2)是不是一个与n无关的常数。注:①若p=0,则{}是公差为0的等差数列,即为常数列q,q,q,…②若p≠0,则{}是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.③数列{}为等差数列的充要条件是其通项=pn+q(p、q是常数)。称其为第3通项公式④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数.四、练习:1.(1)求等差数列3,7,11,……的第4项与第10项.(2)求等差数列10,8,6,……的第20项.(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.(4)-20是不是等差数列0,-3,-7,……的项?如果是,是第几项?如果不是,说明理由.2.在等差数列{}中,(1)已知=10,=19,求与d;五、课后作业:习题3.2 1(2),(4) 2.(2),3,4, 5,6. 8. 9.

等差数列篇5

教学目标 

1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

关于的教学建议

(1)知识结构

(2)重点、难点分析

教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

(3)教法建议

①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项可看作项数的一次型()函数,这与其图像的形状相对应.

⑤有穷的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.

⑥前项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

通项公式的教学设计示例

教学目标 

1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

3.通过参与编题解题,激发学生学习的兴趣.

教学重点,难点

教学重点是通项公式的认识;教学难点 是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

研探式.

教学过程 

一.复习提问

前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?

的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

二.主体设计

通项公式反映了项与项数之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

1.方程思想的运用

(1)已知中,首项,公差,则-397是该数列的第______项.

(2)已知中,首项,则公差

(3)已知中,公差,则首项

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

2.基本量方法的使用

(1)已知中,,求的值.

(2)已知中,,求.

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.

教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

如:已知中,…

由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知中,求;;;;….

类似的还有

(4)已知中,求的值.

以上属于对数列的项进行定量的研究,有无定性的判断?引出

3.研究的单调性

,考察随项数的变化规律.着重考虑的情况.此时是的一次函数,其单调性取决于的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

4.研究项的符号

这是为研究前项和的最值所做的准备工作.可配备的题目如

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)从第________项起以后每项均为负数.

三.小结

1.用方程思想认识通项公式;

2.用函数思想解决问题.

四.板书设计 

通项公式 1.方程思想的运用

2.基本量方法的使用

3.研究的单调性

4.研究项的符号

等差数列篇6

教材:(一)目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。过程:

一、引导观察数列:4,5,6,7,8,9,10,……                       3,0,-3,-6,……                   ,,,,……                       12,9,6,3,……      特点:从第二项起,每一项与它的前一项的差是常数—“等差”

二、得出等差数列的定义:       注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称:  首项  公差2.若 则该数列为常数列3.寻求等差数列的通项公式:                 由此归纳为    当时 (成立)      注意: 1°等差数列的通项公式是关于的一次函数             2°如果通项公式是关于的一次函数,则该数列成ap         证明:若               它是以为首项,为公差的ap。             3°公式中若 则数列递增, 则数列递减 4°图象:一条直线上的一群孤立点三、例题:注意在中,,,四数中已知三个可以求         出另一个。例一(见教材)例二(见教材)

四、关于等差中项:如果成等差数列则     证明:设公差为,则            ∴  例四 《教学与测试》p77例一:在-1与7之间顺次插入三个数使这五个数成ap,求此数列。五、小结:等差数列的定义、通项公式、等差中项六、作业:          

等差数列篇7

教材:(二)目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。过程:一、复习:等差数列的定义,通项公式   二、例一   在等差数列中,为公差,若且求证:1°    2°       证明:1° 设首项为,则∵  ∴2∵ ∴注意:由此可以证明一个定理:设成等差数列,则与首末两项距离相等的两项和等于首末两项的和,即:                  同样:若 则      例二 在等差数列中,                1°若   求              解: 即  ∴              2°若 求         解:=              3°若   求          解: 即   ∴                 从而              4°若   求         解:∵6+6=11+1     7+7=12+2  ……                 ∴      ……                从而+2                 ∴=2-                                                   =2×80-30=130 三、判断一个数列是否成等差数列的常用方法     1.定义法:即证明          已知数列的前项和,求证数列成等差数列,并求其首项、公差、通项公式。                解:                          当时                         时亦满足 ∴             首项                  ∴成等差数列且公差为6    2.中项法:即利用中项公式,若 则成等差数列。         已知,,成等差数列,求证,,也成ap。        证明:∵,,成ap     ∴ 化简得:                                                                                                            =                          ∴,,也成等差数列。        3.通项公式法:利用等差数列得通项公式是关于的一次函数这一性质。           例五 设数列其前项和,问这个数列成ap吗?解:时      时                 ∵  ∴                    ∴数列不成ap  但从第2项起成等差数列。  四、小结:略  五、作业:

等差数列篇8

教学目标 

1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

关于的教学建议

(1)知识结构

(2)重点、难点分析

教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

(3)教法建议

①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项可看作项数的一次型()函数,这与其图像的形状相对应.

⑤有穷的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.

⑥前项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

通项公式的教学设计示例

教学目标 

1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

3.通过参与编题解题,激发学生学习的兴趣.

教学重点,难点

教学重点是通项公式的认识;教学难点 是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

研探式.

教学过程 

一.复习提问

前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?

的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

二.主体设计

通项公式反映了项与项数之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

1.方程思想的运用

(1)已知中,首项,公差,则-397是该数列的第______项.

(2)已知中,首项,则公差

(3)已知中,公差,则首项

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

2.基本量方法的使用

(1)已知中,,求的值.

(2)已知中,,求.

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.

教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

如:已知中,…

由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知中,求;;;;….

类似的还有

(4)已知中,求的值.

以上属于对数列的项进行定量的研究,有无定性的判断?引出

3.研究的单调性

,考察随项数的变化规律.着重考虑的情况.此时是的一次函数,其单调性取决于的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

4.研究项的符号

这是为研究前项和的最值所做的准备工作.可配备的题目如

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)从第________项起以后每项均为负数.

三.小结

1.用方程思想认识通项公式;

2.用函数思想解决问题.

四.板书设计 

通项公式 1.方程思想的运用

2.基本量方法的使用

3.研究的单调性

4.研究项的符号

等差数列篇9

一、教材分析

数列是刻画离散现象的函数,是一种重要的属性模型。人们往往通过离散现象认识连续现象,因此就有必要研究数列。

高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。

在推导等差数列前n项和公式的过程中,采用了:

1、从特殊到一般的研究方法;

2、倒叙相加求和。不仅得出来等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。

等差数列的前n项和是学习极限、微积分的基础,与数学课程的其他内容(函数、三角、不等式等)有着密切的联系。

二、目标分析

(一)教学目标

1、知识与技能

掌握等差数列的前n项和公式,能较熟练应用等差数列的前n项和公式求和。

2、过程与方法

经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。

3、情感、态度与价值观

获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

(二)教学重点、难点

1、重点:等差数列的前n项和公式。

2、难点:获得等差数列的前n项和公式推导的思路。

三、教法学法分析

(一)教法

教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。

探索与发现公式推导的思路是教学的重点。如果直接介绍“倒叙相加”求和,无疑就像波利亚所说的“帽子里跳出来的兔子”。所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。

应用公式也是教学的重点。为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成。

(二)学法

建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。

四、教学过程分析

(一)教学过程设计

1、问题呈现阶段

泰姬陵坐落于印度古都阿格,是世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成共有100层。你知道这个图案一共花了多少宝石吗?

设计意图:

(1)源于历史,富有人文气息。

(2)承上启下,探讨高斯算法。

2、探究发现阶段

(1)学生叙述高斯首尾配对的方法(学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但是他们对这种方法的认识可能处于模仿、记忆的阶段。)

(2)为了促进学生对这种算法的进一步理解,设计了下面的问题。

问题1:图案中,第1层到第21层共有多少颗宝石?(这是奇数个项和的问题,不能简单模仿偶数个项求和的方法,需要把中间项11看成是首、尾两项1和21的等差中项。

通过前后比较得出认识:高斯“首尾配对”的算法还得分奇数、偶数个项的情况求和。

(3)进而提出有无简单的方法。

借助几何图形的直观性,引导学生使用熟悉的几何方法:把“全等三角形”倒置,与原图补成平行四边形。

获得算法:S21=

设计意图:

几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面,只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。

问题2:求1到n的正整数之和。即Sn=1+2+3+…+n

∵Sn=n+(n—1)+(n—2)+…+1

∴2Sn=(n+1)+(n+1)+…。+(n+1)

Sn=(从求确定的前n个正整数之和到求一般项数的前n个正整数之和,旨在让学生体验“倒叙相加求和”这一算法的合理性,从心理上完成对“首尾配对求和”算法的改进)

由于前面的铺垫,学生容易得出如下过程:

∵Sn=an+an—1+an—2+…a1,

∴Sn=。

图形直观

等差数列的性质(如果m+n=p+q,那么am+an=ap+aq。)

设计意图:

一言以蔽之,数学教学应努力做到:以简驭繁,平实近人,退朴归真,循循善诱,引人入胜。

3、公式应用阶段

(1)选用公式

公式1Sn=;

公式2Sn=na1+。

(2)变用公式

(3)知三求二

例1

某长跑运动员7天里每天的训练量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。这位长跑运动员7天共跑了多少米?(本例提供了许多数据信息,学生可以从首项、尾项、项数出发,使用公式1,也可以从首项、公差、项数出发,使用公式2求和。达到学生熟悉公式的要素与结构的教学目的。

通过两种方法的比较,引导学生应该根据信息选择适当的公式,以便于计算。)

例2

等差数列—10,—6,—2,2,…的前多少项和为54?(本例已知首项,前n项和、并且可以求出公差,利用公式2求项数。

事实上,在两个求和公式中包含四个元素,从方程的角度,知三必能求余一。)

变式练习:在等差数列{an}中,a1=20,an=54,Sn=999,求n。

知三求二:

例3

在等差数列{an}中,已知d=20,n=37,Sn=629,求a1及an。(本例是使用等差数列的求和公式和通项公式求未知元。

事实上,在求和公式、通项公式中共有首项、公差、项数、尾项、前n项和五个元素,如果已知其中三个,连列方程组,就可以求出其余两个。)

4、当堂训练,巩固深化。

通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。

采用课后习题1,2,3。

5、小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

(1)课堂小结

①、回顾从特殊到一般的研究方法;

②、体会等差数列的基本元素的表示方法,倒叙相加的算法,以及数形结合的数学思想。

③、掌握等差数列的两个球和公式及简单应用

(2)反思

我设计了三个问题

①、通过本节课的学习,你学到了哪些知识?

②、通过本节课的学习,你最大的体验是什么?

③、通过本节课的学习,你掌握了哪些技能?

(二)作业设计

作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。

我设计了以下作业:

1、必做题:课本p118,练习1,2,3;

习题3.3第2题(3,4)。

2、选做题:

在等差数列中,

(1)已知a2+a5+a12+a15=36,求是S16。

(2)已知a6=20,求s11。

(三)板书设计

板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析

学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

等差数列篇10

一、下面先说说教材

1、教材的地位和作用

中职数学是中等职业学校各类专业学生必修的主要文化基础课,学好这门课程对提高学生数学素养具有十分重要的意义。数列这一章是中职数学的重要内容之一。它不仅是函数知识的延伸,而且还有着非常广泛的实际应用;同时数列还是培养学生数学思维能力的良好题材。

《等差数列的前n项和》是本章的第二节,它为后继学习提供了知识基础,对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

《等差数列》作为《数列》这一章中两个最重要的数列之一,具有承上启下的作用,它的研究和解决集中体现了研究《数列》问题的思想和方法。学习《等差数列的前n项和》对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

2、教学目标根据教学大纲的要求和教学内容的结构特征,并结合学生学习的实际情况,我将本节课的教学目标确定为以下三个方面

知识目标:掌握等差数列的前n项和公式

能力目标:1、培养学生观察、归纳、类比、联想等发现规律的一般方法。

2、提高学生分析问题和解决问题的能力

情感目标:1、培养学生主动探索的精神和良好的学习习惯

2、让学生在问题中感受学习的乐趣;

3、教学重点和难点。根据本节课的内容以及学生已掌握的知识情况我将

教学重点确定为:等差数列的前n项和公式及应用

教学难点确定为:应用等差数列解决有关问题

二、说教法学法

教法教学有法但教无定法,教学方法要与学生学习的实际情况相结合。

中职学生的生源质量逐年下降,大部分中职生基础薄弱、理解接受能力较差,大多数学生不爱学习,不会学习。学生认为数学难,枯燥理解不了。对数学学习提不起兴趣,因此在教学中我注重激发学生学习的兴趣。本节课通过具体的实例引入,采用了问题、类比、发现、归纳的探究式教学方法。引导学生积极主动的去学习。在课堂教学中强调以学生为主体,注重精讲多练。同时也注重学生非智力因素的培养,增强学生的自信心和成就感。为学习营造宽松和谐的氛围。另外在教学中使用多媒体教学手段等,提高教学质量和教学效果。

学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。倡导学生主动参与、乐于探究,培养学生发现问题、分析问题和解决问题的能力。根据学生的认知水平,我设计了:

①创设情境—引入问题

②分析归纳—解决问题

③例题研究—运用新知

④分组训练—巩固新知

⑤总结归纳—提高认识

⑥课后作业—自主探究

六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

接下来,我再具体谈一谈这堂课的教学过程。

三、说教学过程

(一)创设情境——引入问题教学设想

我经常在想:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

由生活中的实例一招聘信息引入:A公司月薪20__元;B公司第一个月800元,以后逐月递加200元。你愿意到哪家公司上班?为什么?在A、B公司一年各共领多少钱?五年呢?以此来激发学生的学习兴趣。再给学生讲数学家高斯的故事

1+2+3+…+100=

同学们,如果你是小高斯,你会怎么向老师解释算法呢?

(二)分析归纳——解决问题教学设想

由高斯的解题过程:

S=1+2+3+…+100

S=100+99+98+…+1

2S=(100+1)×100

S=(100+1)100/2=5050

让学生在在教师的启发引导下,由被动地听讲变为主动参与,敢于发表自己独特的见解,并学会倾听、尊重他人的意见。教师引导学生概括总结出本课新的知识点。

1、等差数列前n项求和公式

类似m+n=s+tam+an=as+atm,n,s,t∈N+

等差求和

倒排相加

另有

即(2)——类似梯形面积公式便于记忆

进而让学生解决课前提出的问题

一年在A公司12×20__

在B公司

800+900+1000+…1900

五年在A公司20__×12×5

在B公司

800+900+1000+…+6700

——让学生利用刚学的知识解决当前的问题,让学生明白学以致用。

(三)例题研究——运用新知教学设想

通过例题,使学生加深对知识的理解,从而达到掌握、运用知识的效果

例1、(1)求正奇数前100项之和;

(2)求第101个正奇数到第150个正奇数之和;

(3)等差数列的通项公式为an=100-3n,求其前65项之和;

(4)在等差数列{an}中,已知a1=3,,求S10

例2、某长跑运动员7天每天的训练量(单位:m)分别是7500,8000,8500,9000,9500,10000,10500,他在7天内共跑了多少米?

例3、设等差数列{an}的公差d=,前n项之和Sn=。求a1及n

课堂上让学生用两种公式解题,有利于提高思维的灵活性,通过板演调动学生的积极性,也掌握本节课的重点和难点。

(四)分组训练—巩固新知

教学设想,例题过后,我特地设计了一组检测题,

1、等差数列求和公式Sn=

2、等差数列{an}中,(1)a1=2,d=-1则Sn=

3、2c+4c+6c+…+2nc=

4、一堆圆木,每层总比上一层多一根,顶层4根,最底层21根,这堆木料有多少根?

5、一只挂钟,遇整点就敲响,钟响的次数是该点的时间数,从1点到12点共响几次?

通过游戏比赛的形式,活跃课堂气氛,提高学生的学习兴趣。来巩固新知识。

(五)总结归纳——提高认识教学设想

让学生通过所学内容的小结,对知识的发生发展有一个清晰的线索,把课堂所学知识构建起新的知识体系。同时养成良好的学习习惯。

(六)课后作业自主探究

教学设想

学生经过以上五个环节的学习,已经初步掌握了等差数列的前n项的求和,并解决了一些实际问题。

根据学生在课堂上知识掌握的情况有针对性布置课后作业。提高学生应用知识的能力。

四、说板书设计

我将这节课的板书设计为三列,一列为本节课的基本知识点,一列为例题,一列为讲解。条理清晰,一目了然。我认为板书设计在课堂教学中也很重要,好的板书就是一份微型教案,向学生展现了所学知识的框架,突出重点难点,清晰直观地将授课内容传递给学生,便于学生理解掌握。

五、说教学反思

根据课堂教学情况,课后及时总结,不断改进,精益求精,努力提高课堂教学效果。

结束:以上是我说课的内容,不当之处希望各位评委老师提出宝贵意见。

等差数列篇11

教学目标 

1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.

(1)了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式;

(2)用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

(3)会利用等差数列通项公式与前项和的公式研究的最值.

2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

教学建议

(1)知识结构

本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

(2)重点、难点分析

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

(3)教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用.

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

④补充等差数列前项和的最大值、最小值问题.

⑤用梯形面积公式记忆等差数列前项和公式.

等差数列的前项和公式教学设计示例

教学目标 

1.通过教学使学生理解等差数列的前项和公

等差数列(精选12篇).docx

将本文的Word文档下载到电脑保存

推荐等级

相关阅读

相关内容

  • 等比数列的前n项和

    教学目标 1.掌握等比数列前项和公式,并能运用公式解决简单的问题.(1)理解公式的推导过程,体会转化的思想;(2)用方程...

  • 等比数列

    教学目标 1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.(1)正确理解的定义,了解公比的概念,明确一个数...

  • 等差数列的前n项和

    教学目标 1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.(1)了解等差数列前项和的定义,了解逆项相加的原理...

  • 等差数列

    教学目标 1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是的限定条...

  • 数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项.(1)...

  • 第一册已知三角函数值求角

    【教学课题】:已知三角函数值求角【教学目标 】:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角【教学重点...

  • 第一册函数的概念

    教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的...

  • 第一册函数解析式的求法

    总第 课时 课型:复习课 授课时间: 年 月 日教学目标 :让学生了解函数解析式的求法。重点:对f的了解,用多...

  • 第一册等差数列

    §3.2.1等差数列目的:1.要求学生掌握等差数列的概念2.等差数列的通项公式,并能用来解决有关问题。重点:1.要证明数列{an...

  • 第一册正余弦函数的图象

    河南省说课大奖赛教案 高中新教村《数学》第一册(下)§4.8 正弦函数、余弦函数的图象和性质(一)正弦函数、余弦函数的...

  • 第一册数列

    3.1.1数列 教学目标 1.理解数列概念,了解数列和函数之间的关系 2.了解数列的通项公式,并会用通...

  • 第一册函数

    各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。一、教材分析1、 教材的地位和...

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号