更新时间:2025-08-12 11:34:15
交集、并集
知识目标:理解交集与并集的概念;会求两个集合的交集、并集;理解区间的表示法;
掌握有关集合的术语和符号,会用它们正确地表示一些简单的集合。
能力目标:能用上述知识点解决实际问题
德育目标:培养学生辨别是非,独立解决问题的思维品质
教学重点:交集、并集的概念及运算;
教学难点:弄清交集与并集的概念、符号之间的区别与联系;会正确表示一些简单集合。
教学过程
一.学生活动
用venn图表示下列各组的三个集合:
(1)
(2)
(3);
;
思考:上述每组集合中,a,b,c之间都具有怎样的关系?(易看出,集合c中的每一个元素,既在集合a中又在集合b中)
二.师生互动建构数学
1. 交集:一般地,由所有属于集合a且属于集合b的元素构成的集合,称为a与b的交集,记作:(读作“a交b”),即:
可用左图阴影部分表示显然有:,,。
思考ab=a,ab= 可能成立吗?
仿照上面可得并集的概念
2.并集:一般的,由所有属于集合a或属于集合b的元素构成的集合,称为a与b的并集,记做ab。(读作a并b),即ab=
如图 显然有ab=ba,aab,bab
思考:ab=a能成立吗?a 是什么集合?
练习; 2
拓展:求下列各图中集合a与b的并集与交集
a b
a(b)
a
b
b
a
ba
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
三.数学运用
例1. 设,求
解:
拓展:在例1中我们来研究集合中元素的个数问题,我们把有限集a的元素个数记作card(a).在例1中,card(a)=3,card(b)=4,card(a∪b)=5.
显然,card(a∪b)≠card(a)+card(b).
这是因为集合中的元素是没有重复出现的,在两个集合的并集中,两个元素的公共元素只能出现一次,即card(a∩b).在例1中,card(a∩b)=2.
一般地,对于两个有限集a,b,有card(a∪b)=card(a)+card(b)-card(a∩b).我们称之为容斥原理。
阅读:例2(venn图)
例3(不等式的解集交与并,可用数轴处理)
练习: 1.3、4、5
为了叙述方便,常用区间概念:设
半开半闭区间
开区间
四.回顾小结
1.在求交集时,应先识别集合的元素属性及范围,并化简集合,对于数集可以借助于数轴直观,以形助数得出交集。
2.区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,进而用集合语言表达。
3.关于交集有如下性质
a∩ba,a∩bb,a∩a=a,a∩=,a∩b=b∩a
4.关于并集有如下性质
aa∪b,ba∪b,a∪a=a,a∪=a,a∪b=b∪a
5. 若a∩b=a,则ab,反之也成立
若a∪b=b,则ab,反之也成立
若x∈(a∩b),则x∈a且x∈b
若x∈(a∪b),则x∈a,或x∈b
将本文的Word文档下载到电脑保存
推荐等级教学目标 1.掌握等比数列前项和公式,并能运用公式解决简单的问题.(1)理解公式的推导过程,体会转化的思想;(2)用方程...
教学目标 1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.(1)正确理解的定义,了解公比的概念,明确一个数...
教学目标 1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.(1)了解等差数列前项和的定义,了解逆项相加的原理...
教学目标 1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是的限定条...
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项.(1)...
【教学课题】:已知三角函数值求角【教学目标 】:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角【教学重点...
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的...
总第 课时 课型:复习课 授课时间: 年 月 日教学目标 :让学生了解函数解析式的求法。重点:对f的了解,用多...
§3.2.1等差数列目的:1.要求学生掌握等差数列的概念2.等差数列的通项公式,并能用来解决有关问题。重点:1.要证明数列{an...
河南省说课大奖赛教案 高中新教村《数学》第一册(下)§4.8 正弦函数、余弦函数的图象和性质(一)正弦函数、余弦函数的...
3.1.1数列 教学目标 1.理解数列概念,了解数列和函数之间的关系 2.了解数列的通项公式,并会用通...
各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。一、教材分析1、 教材的地位和...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号