更新时间:2025-08-12 11:34:15
§1.1.1 算法的概念【教学目标】:(1) 了解算法的含义,体会算法的思想。(2) 能够用自然语言叙述算法。(3) 掌握正确的算法应满足的要求。(4) 会写出解线性方程(组)的算法。(5) 会写出一个求有限整数序列中的最大值的算法。【教学重点】算法的含义、解二元一次方程组和判断一个数为质数的算法设计。.【教学难点】把自然语言转化为算法语言。.【学法与教学用具】:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。教学用具:计算机,ti-voyage200图形计算器【教学过程】一、本章章头图说明章头图体现了中国古代数学与现代计算机科学的联系,它们的基础都是“算法”。算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。古代的计算工具:算筹与算盘.20世纪最伟大的发明:计算机,计算机是强大的实现各种算法的工具。例1:解二元一次方程组: 分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.解:第一步:②-①×2,得:5y=3; ③ 第二步:解③得; 第三步:将代入①,得.学生探究:对于一般的二元一次方程组来说,上述步骤应该怎样进一步完善?
老师评析:本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法。下面写出求方程组的解的算法:例2:写出求方程组的解的算法.解:第一步:②×a1-①×a2,得: ③ 第二步:解③得; 第三步:将代入①,得利用ti-voyage200图形计算器演示:(吸引学生的注意力) 运行结果:(其中输入a1=1,b1=-2,m1=-1,a2=2b2=1,m2=1,当然可输入其它数值)算法概念: 在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.说明:1.“算法”没有一个精确化的定义,教科书只对它作了描述性的说明.2.算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
将本文的Word文档下载到电脑保存
推荐等级教学目标 1.掌握等比数列前项和公式,并能运用公式解决简单的问题.(1)理解公式的推导过程,体会转化的思想;(2)用方程...
教学目标 1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.(1)正确理解的定义,了解公比的概念,明确一个数...
教学目标 1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.(1)了解等差数列前项和的定义,了解逆项相加的原理...
教学目标 1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是的限定条...
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项.(1)...
【教学课题】:已知三角函数值求角【教学目标 】:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角【教学重点...
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的...
总第 课时 课型:复习课 授课时间: 年 月 日教学目标 :让学生了解函数解析式的求法。重点:对f的了解,用多...
§3.2.1等差数列目的:1.要求学生掌握等差数列的概念2.等差数列的通项公式,并能用来解决有关问题。重点:1.要证明数列{an...
河南省说课大奖赛教案 高中新教村《数学》第一册(下)§4.8 正弦函数、余弦函数的图象和性质(一)正弦函数、余弦函数的...
3.1.1数列 教学目标 1.理解数列概念,了解数列和函数之间的关系 2.了解数列的通项公式,并会用通...
各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。一、教材分析1、 教材的地位和...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号