多学习 > 教案下载 > 数学教案 > 高中数学教案 > 高一数学教案 > 高一数学函数教案(精选3篇)

高一数学函数教案(精选3篇)

更新时间:2025-08-12 11:34:15

高一数学函数教案篇1

第四课时(2.1,2.2)教学目的:1.掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.2.培养观察分析、抽象概括能力和归纳总结能力;教学重点:值域的求法教学难点:二次函数在某一给定区间上的值域(最值)的求法教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;定义域和对应法则一经确定,值域就随之确定。 已学过的函数的值域二、讲授新课1.直接法:利用常见函数的值域来求例1.求下列函数的值域①y=3x+2(-1x1)     ②    ③           ④2.二次函数比区间上的值域(最值):例2求下列函数的最大值、最小值与值域:①;         ②;③; ④;3.判别式法(△法):判别式法一般用于分式函数,其分子或分母中最高为二次式且至少有一个为二次式,解题中要注意二次项系数是否为0的讨论及函数的定义域.例3.求函数的值域4.换元法例4.求函数的值域5.分段函数例5.求函数y=|x+1|+|x-2|的值域.三、单元小结:函数的概念,解析式,定义域,值域的求法.四、作业:《精析精练》p58智能达标训练

高一数学函数教案篇2

课   题:实习作业教学目的:1.利用所学函数的知识解决实际问题;2.理解题意并能用数学语言表达实际问题;3.提高学生收集、处理信息的能力,分析、解决问题的能力.4.培养学生团结协作的精神和社会活动能力。5.明确实习作业的基本要求和方法,明确实习报告的规范格式教学重点:用数学的眼光观察事物,用函数知识解决问题教学难点:收集合适的实际问题,准确的建立与之相应的数学模型。教学过程:一、复习引入:前面,我们一起学习了函数的应用举例,明确了函数知识在实际生产、生活中被广泛地应用。在日常生活中,大家可以到附近的商店、工厂作实际调查,了解函数在实际中的应用,把遇到的实际问题转化为建立函数关系,并作出解答,写出实习报告。二、新授内容:例1 某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题:⑴写出该城市人口数(万人)与年份(年)的函数关系式;⑵计算XX年以后该城市人口总数(精确到0.1万人);⑶计算大约多少年以后该城市人口将达到120万人(精确到1年);分析:此题是一道关于人口的典型问题,计划生育是我国的基本国策,通过此题可以让学生了解控制人口的现实意义。解:(1)1年后该城市人口总数为2年后该城市人口总数为:

3年后该城市人口总数为:

年后该城市人口总数为

(2)XX年后该城市人口总数为:⑶设年后该城市人口将达到120万人,即      想一想:如果20年后该城市人口总数不超过120万人年自然增长率应该控制在多少?设年自然增长率为,依题意有:≤120,由此有≤120由计算得:≤0.9%即年自然增长率应控制在0.9%以内此问题反映了控制人口的现实意义实习报告的规范格式:实习报告:             XX年10月9日

题目

某城市人口增长与人口控制

实际问题某城市现有人口100万人,若年增长率为1.2%,试解答下面的问题:(1)      写出人口总数与年份的函数式;(2)      计算XX年以后该城市人口总数(精确到0.1万);(3)      大约多少年后人口达到120万人(精确到年);(4)      若20年后该城市人口总数不超过120万人,年增长率应该控制在多少?

建立函数关系式

分析

解答(1)      XX年后人口总数为112.7万人;(2)      大约XX年后人口达到120万人;

说明

解释若要20年后该城市人口总数不超过120万人,年自然增长率应控制在0.9%以内

负责人员及参加人员

指导教师审核意见

到附近的商店,工厂,学校实际调查,了解函数在实际中的应用,把遇到的问题转化为建立函数关系,并作出解答,写出实习报告。例2

题目

一定车流量情况下,十字路口红绿灯时间的确定(黄灯时间忽略不计)实际问题

在附近十字路口经早、中、晚共15次对一周期(一个周期的时间长为90s),车流量的统计值分别是南北向15辆,东西向是30辆(每个方向只有一个车道);其它因素(如人流量和非机动车流量)忽略不计。问如何确定十字路口红灯绿灯的时间(假定车流量分布均等)?建立函数关系      要确定红绿灯时间,就是要使一个周期内,路口车辆等待的总时间最短,它由南北向和东西向车辆等待的总时间组成。分析与解答    

解:设在一个周期内,东西向绿灯,南北向红灯时间为t,则东西向红灯,南北向绿灯的时间为(90-t)s,一辆车等待最短时间为0,等待最长时间为t,设车流量是均匀的,则每一辆车平均等待时间为t/2;在一个周期内,南北向的车辆在路口等待的时间为(15t/90)×(t/2)=(t2/12)(其中路口等待的车辆数为(15t/90))同理可得,东西方向的车辆在路口等待的总时间为30×(90-t)÷90×(90-t)÷2=(90-t)×(90-t)÷6设一个周期内,路口车辆等待时间为y,则y=t2/12+(90-t)2/6=(60-t)2/4+450∴当t=60s的时候,y=450∴90-t=30s答:东西向绿灯时间为60s,南北向绿灯时间为30s说明与解释      

这个模型的建立较理想化,这是由于知识的局限性负责人及参加人员    

李冬(组长)、王凯、宋晓晨指导教师

审核意见

选题不错,建议多十字路口调查,以准确掌握确定红绿灯时间的确定与车流量的关系。马试验                                       .10.例3

题目  当车站的客流量为多大时,需建立过轨天桥实际问题一些大中城市的火车站,客流量非常大,平均每十几分钟就会有一列客车进站或发车,为了减少车站压力,使旅客尽可能少的在车站逗留,当客流量超过一定量时,就会在站台设立过轨天桥。当客流量超过多少时?在车站要设立过轨天桥。经调查知:在大中型车站设有8个检票通道口,平均每人检票需1.5秒;每节车厢平均会有30人下车,每列车有15节列车车厢,而且车站为了方便旅客,会让旅客提前10分钟进站,平均每次检票过程大约需要10分钟,旅客从下车走到检票口大约要3分钟.                           建立函数关系分析与解答  说明与解释1. 检票口为4个进站口,4个出站口,一般情况下不通用2. 客流量包括进站人数和出站人数3. 调查情况为平时情况,不包括节假日及春运期间负责人及参加人员李冬(组长)、王凯、宋晓晨指导教师审核意见选题很好,为车站科学决策提供了理论依据。                           马试验                                       .10.

例4题目  水利兴修问题实际问题兴修水利所开渠道断面为等腰梯形,腰与水平线的夹角为60°,要求湿透长度(即断面与水接触的边界长度)为定值l,问渠深多少时,可使流量最大。建立函数关系渠深与流量都是可变的,在水的流速一定的条件下,水流量的大小是由断面面积大小来确定的,因此,本题实际上是求:渠深多少时,断面面积最大。分析与解答说明与解释(略)负责人及参加人员李冬(组长)、王凯、宋晓晨指导教师审核意见选题很好,为农村水利建设科学决策提供了理论依据。                           马试验                                       .10.

例5题目  关于银行储蓄获利问题实际问题在当今社会有些人赚了钱,就存入银行,一则保险,二则获利,何乐而不为。为了获取最多的利益,我们建议大家参考以下数据,三思而后行! 建立函数关系存法:都为三年,不满则转存,每次都存定金a元)(计算有错!)注:不按复利、不按零存整取、整存零取、定活两便;分析与解答分析:由以上五种数据可以看出;采用一次性存三年的,利息最低,而先存2年,再存1年的、转存6个月、3个月的,利息递增。答案:综上所述采用第一种方案即到(满)三个月就转存一次的获利最大。 说明与解释  此答案并不确定,因人而异。爱钱如命的,采用第一种方法。普通人(正常人)采用2、3、4种方法。家人较忙的采用最后一种方法。注:如果你的资金相当大,最好选1、2,因为那样所得的利息相当可观(腿累心欢!)负责人及参加人员李冬(组长)、王凯、宋晓晨指导教师审核意见选题具有一般意义,对储蓄户有一定的参考作用。                           马试验                                       .10.                                      本题该小组计算错误,教师有意不点破,让学生去发现和讨论正确结果恰恰相反,说明学生对一些实际生活问题并不了解。三、练习:以上,通过例题介绍了实习作业的基本要求和方法,并给出了实习报告的规范格式。接下来,讨论一下,在我们的日常生活中,有哪些函数知识被实际所应用。我们的实习活动以什么样的方式和方法来进行。希望大家畅所欲言。四小结:通过本节学习,明确了实习作业的基本要求和方法,以及实习报告的规范格式,用数学模型方法解决实际问题的一般步骤:提出问题、建立模型、分析求解、还原说明。五、课后作业:到附近的商店、工厂、学校作实际调查,了解函数在实际中的应用,把遇到的实际问题转化为建立函数关系、并作出解答,写出实习报告。六、板书设计(略)七、课后记:本节课的难点在于实际问题的提出,所以最好让学生深入生活实际,教师及时加以指导,才可能发现函数知识在实际中的应用。发现好的例子,要及时总结,并在学生中展开交流。

高一数学函数教案篇3

第三课时(2.1,2.2)

教学目的:1.初步掌握分段函数与简单的复合函数,会求它们的解析式,定义域,值域.

2.会画函数的图象,掌握数形结合思想,分类讨论思想.

重点难点:分段函数的概念及其图象的画法.

教学过程:

一、                       复习 函数的概念,函数的表示法

二、例题

例1.         已知  .求f(f(f(-1)))

(从里往外“拆”)例2.         已知f(x)=x2-1 g(x)=求f[g(x)]   (介绍复合函数的概念)例3.若函数的定义域为[-1,1],求函数的定义域。例3.         作出函数的图像(先化为分段函数,再作图象)例5.作函数y=|x-2|(x+1)的图像.    (先化为分段函数,再作图象.图象见课件第一页)例6.作出函数的图象      (用列表法先作第一象限的图象,再根据对称性作第三象限的图象.图象见课件第二页,进一步介绍函数的图象,见课件第三页)

三、       课堂练习 课本p56习题2.1 3,6

四、       作业 课本p56习题2.1 4,5,《精析精练》p65智能达标训练

高一数学函数教案(精选3篇).docx

将本文的Word文档下载到电脑保存

推荐等级

相关阅读

相关内容

  • 等比数列的前n项和

    教学目标 1.掌握等比数列前项和公式,并能运用公式解决简单的问题.(1)理解公式的推导过程,体会转化的思想;(2)用方程...

  • 等比数列

    教学目标 1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.(1)正确理解的定义,了解公比的概念,明确一个数...

  • 等差数列的前n项和

    教学目标 1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.(1)了解等差数列前项和的定义,了解逆项相加的原理...

  • 等差数列

    教学目标 1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是的限定条...

  • 数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项.(1)...

  • 第一册已知三角函数值求角

    【教学课题】:已知三角函数值求角【教学目标 】:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角【教学重点...

  • 第一册函数的概念

    教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的...

  • 第一册函数解析式的求法

    总第 课时 课型:复习课 授课时间: 年 月 日教学目标 :让学生了解函数解析式的求法。重点:对f的了解,用多...

  • 第一册等差数列

    §3.2.1等差数列目的:1.要求学生掌握等差数列的概念2.等差数列的通项公式,并能用来解决有关问题。重点:1.要证明数列{an...

  • 第一册正余弦函数的图象

    河南省说课大奖赛教案 高中新教村《数学》第一册(下)§4.8 正弦函数、余弦函数的图象和性质(一)正弦函数、余弦函数的...

  • 第一册数列

    3.1.1数列 教学目标 1.理解数列概念,了解数列和函数之间的关系 2.了解数列的通项公式,并会用通...

  • 第一册函数

    各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。一、教材分析1、 教材的地位和...

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号