更新时间:2025-08-12 11:34:15
1、教材分析
(1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来. 2、教法建议 本节内容需要一个课时. (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结; (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学. 教学目标 1.理解切线长的概念,掌握; 2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度. 教学重点: 是教学重点 教学难点 : 的灵活运用是教学难点 教学过程 设计: (一)观察、猜想、证明,形成定理 1、切线长的概念. 如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长. 引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. 2、观察 利用电脑变动点P的位置,观察图形的特征和各量之间的关系. 3、猜想 引导学生直观判断,猜想图中PA是否等于PB.PA=PB. 4、证明猜想,形成定理. 猜想是否正确。需要证明. 组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB. 想一想:根据图形,你还可以得到什么结论? ∠OPA=∠OPB(如图)等. :从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 5、归纳: 把前面所学的切线的5条性质与一起归纳切线的性质 6、的基本图形研究 如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C (1)写出图中所有的垂直关系; (2)写出图中所有的全等三角形; (3)写出图中所有的相似三角形; (4)写出图中所有的等腰三角形. 说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础. (二)应用、归纳、反思 例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线, A和B是切点,BC是直径. 求证:AC∥OP. 分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB. 从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法. 证法一.如图.连结AB. PA,PB分别切⊙O于A,B ∴PA=PB∠APO=∠BPO ∴OP⊥AB 又∵BC为⊙O直径 ∴AC⊥AB ∴AC∥OP(学生板书) 证法二.连结AB,交OP于D PA,PB分别切⊙O于A、B ∴PA=PB∠APO=∠BPO ∴AD=BD 又∵BO=DO ∴OD是△ABC的中位线 ∴AC∥OP 证法三.连结AB,设OP与AB弧交于点E PA,PB分别切⊙O于A、B ∴PA=PB ∴OP⊥AB ∴= ∴∠C=∠POB ∴AC∥OP 反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力. (分析和解题略) 反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补. P120练习: 练习1填空 如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________ 练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长. 分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果. (解略) 反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力. (三)小结 1、提出问题学生归纳 (1)这节课学习的具体内容; (2)学习用的数学思想方法; (3)应注意哪些概念之间的区别? 2、归纳基本图形的结论 3、学习了用代数方法解决几何问题的思想方法. (四)作业 教材P131习题7.4A组1.(1),2,3,4.B组1题. 探究活动 你能找出(图1)与(图2)的错误所在吗? 在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线. 提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上. 在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有 a=P1A=P1P3+P3A=P1P3+c① c=P3C=P2P3+P3A=P2P3+b② a=P1B=P1P2+P2B=P1P2+b③ 将②代人①式得 a=P1P3+(P2P3+b)=P1P3+P2P3+b, ∴a-b=P1P3+P2P3 由③得a-b=P1P2得 ∴P1P2=P2P3+P1P3 ∴P1、P2、P3应重合,故图2是错误的.
例2、圆的外切四边形的两组对边的和相等.
将本文的Word文档下载到电脑保存
推荐等级22.2.3公式法篇1教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标理解一...
22.2.5因式分解法篇1教学内容用因式分解法解一元二次方程.教学目标掌握用因式分解法解一元二次方程.通过复习用配方法、公...
函数的图象篇1一、教学目的1.使学生进一步理解自变量的取值范围和函数值的意义.2.使学生会用描点法画出简单函数的图象.二...
一元二次方程的应用篇1第一课时一、教学目标 1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。2.通过列...
2.3平行线特征篇1§2.3平行线特征教学目标 1.平行线的性质;2.运用这些性质进行简单的推理或计算;3.经历观察﹑操作﹑推理...
4.4一元一次方程的应用篇15.3 用方程解决问题(2)--打折销售 学习目标:1、进一步经历运用方程解决实际问题的过程...
近似数篇1教学设计示例 一、素质教育目标 (一)知识教学点 1.使学生理解和有效数字的意义 2.给一个,能说出它精确到哪一...
12.1一元二次方程篇1教学目的1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成...
相似图形篇1教学交流课教案: 第四章教学目标 :1、知道线段比的概念。2、会求两条线段的比。3、通过有关比例尺的计算,让...
二元一次方程篇1§11.1【教学目标 】【知识目标】了解、组及其解等有关概念,并会判断一组数是不是某个组的解。【能力目标...
平均数教案篇1导学内容:人教版小学数学教材第90~91页的例1、例2及相关内容。导学目标:1.使学生理解平均数的含义,初步...
《中位线》教案篇1教学过程一、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号