更新时间:2025-08-12 11:34:15
教学目的:1.掌握反函数的概念和表示法,会求一个函数的反函数 2.互为反函数的图象间的关系. 3.反函数性质的应用.教学重点:反函数的定义和求法,互为反函数的图象间的关系.教学难点:反函数的定义,反函数性质的应用.教学过程:
第一课时教学目的:1.掌握反函数的概念和表示法,会求一个函数的反函数 2.互为反函数的图象间的关系.教学重点:反函数的定义和求法,互为反函数的图象间的关系.教学难点:反函数的定义和求法。教学过程:一、复习引入:由物体作匀速直线运动的位移公式s=vt,(其中速度v是常量)s是时间t的函数;可以变形为:,这时,位移s是自变量,时间t是位移s的函数.又如,在函数中,x是自变量,y是x的函数.由中解出x,得到式子.这样,对于y在r中任何一个值,通过式子,x在r中都有唯一的值和它对应.因此,它也确定了一个函数:y为自变量,x为y的函数,定义域是yr,值域是xr.上述两例中,由函数s=vt得出了函数;由函数得出了函数,不难看出,这两对函数中,每一对中两函数之间都存在着必然的联系:①它们的对应法则是互逆的;②它们的定义域和值域相反:即前者的值域是后者的定义域,而前者的定义域是后者的值域.我们称这样的每一对函数是互为反函数.二、讲解新课:反函数的定义设函数的值域是c,根据这个函数中x,y的关系,用y把x表示出,得到x=(y).若对于y在c中的任何一个值,通过x=(y),x在a中都有唯一的值和它对应,那么,x=(y)就表示y是自变量,x是自变量y的函数,这样的函数x=(y)(yc)叫做函数的反函数,记作,习惯上改写成开始的两个例子:s=vt记为,则它的反函数就可以写为,同样记为,则它的反函数为:.从映射的角度看,若确定函数y=f(x)的映射是定义域a到值域c的一一映射,则它的逆映射f-1: (x=f-1(y))c→a确定的函数x=f-1(y)(习惯上记为y=f-1(x))叫做函数y=f(x)的的反函数.即,函数是定义域a到值域c的映射,而它的反函数是集合c到集合a的映射,由此可知:1. 只有“一一映射”确定的函数才有反函数.如(x∊r)没有反函数,而,有反函数是2.互为反函数的定义域和值域互换.即函数的定义域正好是它的反函数的值域;函数的值域正好是它的反函数的定义域.且(如下表):
函数
反函数定义域
a
c值域
c
a3.函数与互为反函数。即若函数有反函数,那么函数的反函数就是.三、例题:例1.求下列函数的反函数:①; ②;③; ④.小结:⑴求反函数的一般步骤分三步,一解、二换、三注明⑵反函数的定义域由原来函数的值域得到,而不能由反函数的解析式得到。⑶求反函数前先判断一下决定这个函数是否有反函数,即判断映射是否是一一映射。例2.求函数()的反函数,并画出原来的函数和它的反函数的图像。
将本文的Word文档下载到电脑保存
推荐等级教学目标 1.掌握等比数列前项和公式,并能运用公式解决简单的问题.(1)理解公式的推导过程,体会转化的思想;(2)用方程...
教学目标 1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.(1)正确理解的定义,了解公比的概念,明确一个数...
教学目标 1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.(1)了解等差数列前项和的定义,了解逆项相加的原理...
教学目标 1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是的限定条...
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项.(1)...
【教学课题】:已知三角函数值求角【教学目标 】:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角【教学重点...
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的...
总第 课时 课型:复习课 授课时间: 年 月 日教学目标 :让学生了解函数解析式的求法。重点:对f的了解,用多...
§3.2.1等差数列目的:1.要求学生掌握等差数列的概念2.等差数列的通项公式,并能用来解决有关问题。重点:1.要证明数列{an...
河南省说课大奖赛教案 高中新教村《数学》第一册(下)§4.8 正弦函数、余弦函数的图象和性质(一)正弦函数、余弦函数的...
3.1.1数列 教学目标 1.理解数列概念,了解数列和函数之间的关系 2.了解数列的通项公式,并会用通...
各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。一、教材分析1、 教材的地位和...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号