多学习 > 教案下载 > 数学教案 > 高中数学教案 > 高三数学教案 > 函数、方程及不等式的关系复习提纲

函数、方程及不等式的关系复习提纲

更新时间:2025-08-12 11:34:15

高考要求
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法
重难点归纳
1二次函数的基本性质
(1)二次函数的三种表示法
y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n
(2)当a>0,f(x)在区间[p,q]上的最大值m,最小值m,令x0= (p+q)
若-<<i>p,则f(p)=m,f(q)=m;
若p≤-<<i>x0,则f(-)=m,f(q)=m;
若x0≤-<<i>q,则f(p)=m,f(-)=m;
若-≥q,则f(p)=m,f(q)=m
2二次方程f(x)=ax2+bx+c=0的实根分布及条件
(1)方程f(x)=0的两根中一根比r大,另一根比r小a·f(r)<0;
(2)二次方程f(x)=0的两根都大于r 
(3)二次方程f(x)=0在区间(p,q)内有两根
(4)二次方程f(x)=0在区间(p,q)内只有一根f(p)·f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立
(5)方程f(x)=0两根的一根大于p,另一根小于q(p<<i>q)
3二次不等式转化策略
(1)二次不等式f(x)=ax2+bx+c≤0的解集是
(-∞,α)∪[β,+∞a<0且f(α)=f(β)=0;
(2)当a>0时,f(α)<<i>f(β) |α+|<|β+|,
当a<0时,f(α)<<i>f(β)|α+|>|β+|;
(3)当a>0时,二次不等式f(x)>0在[p,q]恒成立

(4)f(x)>0恒成立
典型题例示范讲解
例1已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈r)
(1)求证两函数的图象交于不同的两点a、b;
(2)求线段ab在x轴上的射影a1b1的长的取值范围
命题意图本题主要考查考生对函数中函数与方程思想的运用能力
知识依托解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合
错解分析由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”
技巧与方法利用方程思想巧妙转化
(1)证明由消去y得ax2+2bx+c=0
δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4[(a+c2]
∵a+b+c=0,a>b>c,∴a>0,c<0
∴c2>0,∴δ>0,即两函数的图象交于不同的两点
(2)解设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=-,x1x2=
|a1b1|2=(x1-x2)2=(x1+x2)2-4x1x2

∵a>b>c,a+b+c=0,a>0,c<0
∴a>-a-c>c,解得∈(-2,-)
∵的对称轴方程是
∈(-2,-)时,为减函数
∴|a1b1|2∈(3,12),故|a1b1|∈()
例2已知关于x的二次方程x2+2mx+2m+1=0
(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围
(2)若方程两根均在区间(0,1)内,求m的范围
命题意图本题重点考查方程的根的分布问题
知识依托解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义
错解分析用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点
技巧与方法设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制3页,当前第1页123

函数、方程及不等式的关系复习提纲.docx

将本文的Word文档下载到电脑保存

推荐等级

相关内容

  • 组合

    教学目标 (1)使学生正确理解的意义,正确区分排列、问题;(2)使学生掌握数的计算公式、数的性质用数与排列数之间的关...

  • 排列

    教学目标 (1)正确理解的意义。能利用树形图写出简单问题的所有;(2)了解和数的意义,能根据具体的问题,写出符合要求...

  • 排列、组合、二项式定理-基本原理

    教学目标 (1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;(2)能结合树形图来帮助理解加法原理与乘法原...

  • 复数的乘法与除法

    教学目标 (1)掌握复数乘法与除法的运算法则,并能熟练地进行乘、除法的运算;(2)能应用i和的周期性、共轭复数性质、模...

  • 复数的加法与减法

    教学目标 (1)掌握复数加法与减法运算法则,能熟练地进行加、减法运算;(2)理解并掌握复数加法与减法的几何意义,会用...

  • 复数的向量表示

    教学目标 (1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;(2)理解并掌握复数集、复平面内的...

  • 复数的有关概念

    教学目标 (1)掌握,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。(...

  • 数学教案-排列教学目标

    教学目标 (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;(2)了解排列和排列数的意义,能根据具体的问...

  • 数学教案-复数的向量表示

    教学目标 (1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;(2)理解并掌握复数集、复平面内的...

  • 数学教案-排列、组合、二项式定理-基本原理

    教学目标 (1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;(2)能结合树形图来帮助理解加法原理与乘法原...

  • 复数的有关概念

    教学目标(1)掌握,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。(2...

  • 复数的向量表示

    教学目标(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;(2)理解并掌握复数集、复平面内的点...

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号