更新时间:2025-08-12 11:34:15
【考试要求】
1.了解二元一次不等式(组)表示的平面区域;了解与线性规划相关的基本概念
2.了解线性规划问题的图象法,并能用线性规划的方法解决一些简单的实际问题。
【教学重点】
1.二元一次不等式(组)表示的平面区域;
2.应用线性规划的方法解决一些简单的实际问题。
【教学难点】
线性规划在实际问题的应用
【高考展望】
1. 线性规划是教材的新增内容,高考中对这方面的知识涉及的还比较少,但今后将会成为新高考的热点之一;
2. 在高考中一般不会单独出现,往往都是隐含在其他数学内容的问题之中,就是说常结合其他数学内容考查,往往都是容易题
【知识整合】
1. 二元一次不等式(组)表示平面区域:一般地,二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的__________。我们把直线画成虚线以表示区域_________边界直线。当我们在坐标系中画不等式所表示的平面区域时,此区域应___________边界直线,则把边界直线画成____________.
2. 由于对在直线同一侧的所有点,把它的坐标代入,所得到实数的符号都__________,所以只需在此直线的某一侧取一个特殊点,从的_________即可判断>0表示直线哪一侧的平面区域
3. 二元一次不等式组是一组对变量x,y的__________,这组约束条件都是关于x,y的一次不等式,所以又称为_____________;
4. (a,b是实常数)是欲达到最大值或_________所涉及的变量x,y的解析式,叫做______________。由于又是x,y的一次解析式,所以又叫做_________;
5. 求线性目标函数在_______下的最大值或____________的问题,统称为_________问题。满足线性约束条件的解叫做_________,由所有可行解组成的集合叫做_________。分别使目标函数取得____________和最小值的可行解叫做这个问题的___________.
【典型例题】
例1.(课本题)画出下列不等式(组)表示的平面区域,
1) 2) 3)
4) 5) 6)
例2.
1)画出表示的区域,并求所有的正整数解
2)画出以a(3,-1)、b(-1,1)、c(1,3)为顶点的的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数的最大值和最小值。
例3.1)已知,求的取值范围
2)已知函数,满足求的取值范围
例4(04苏19)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损。某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资打算多少万元,才能使可能的盈利最大?
将本文的Word文档下载到电脑保存
推荐等级教学目标 (1)使学生正确理解的意义,正确区分排列、问题;(2)使学生掌握数的计算公式、数的性质用数与排列数之间的关...
教学目标 (1)正确理解的意义。能利用树形图写出简单问题的所有;(2)了解和数的意义,能根据具体的问题,写出符合要求...
教学目标 (1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;(2)能结合树形图来帮助理解加法原理与乘法原...
教学目标 (1)掌握复数乘法与除法的运算法则,并能熟练地进行乘、除法的运算;(2)能应用i和的周期性、共轭复数性质、模...
教学目标 (1)掌握复数加法与减法运算法则,能熟练地进行加、减法运算;(2)理解并掌握复数加法与减法的几何意义,会用...
教学目标 (1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;(2)理解并掌握复数集、复平面内的...
教学目标 (1)掌握,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。(...
教学目标 (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;(2)了解排列和排列数的意义,能根据具体的问...
教学目标 (1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;(2)理解并掌握复数集、复平面内的...
教学目标 (1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;(2)能结合树形图来帮助理解加法原理与乘法原...
教学目标(1)掌握,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。(2...
教学目标(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;(2)理解并掌握复数集、复平面内的点...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号