多学习 > 教案下载 > 数学教案 > 小学数学教案 > 小学六年级数学教案 > 北师大版六年级数学上册《圆的面积》课堂教学实录(精选15篇)

北师大版六年级数学上册《圆的面积》课堂教学实录(精选15篇)

更新时间:2025-08-12 11:34:24

北师大版六年级数学上册《圆的面积》课堂教学实录篇1

一、创设情境,引入新课。

1、课前谈话

师:中国古代有许多聪颖机灵的少年儿童,曹冲就是其中的一位。“曹冲称象”的故事你们熟悉吗?谁愿意给大家讲一讲。(指名一位学生介绍故事简介)

师:老师有个问题不明白,本来想知道大象的重量,曹冲为什么要称那些石头?

生:石头的重量和大象的重量相等。

师:你们说的这点很关键,必须保证石头和大象重量相等,这样称出的石头重量就是大象的重量。但是曹冲为什么不直接称大象呢?

生:因为大象太重,不能直接用秤称出来。

师:是啊,当时条件下,无法直接称出大象的重量,所以曹冲才想出用石头代替大象的方法。其实这也是我们数学学习中经常要用到的“转化”的方法,也就是当我们遇到新问题,不能直接解决时,可以把它转化成已有的知识和方法来解决的问题。

2、复习铺垫

师:现在请同学们回忆一下平行四边形的面积公式推导我们是把它转化成什么图形来计算的?

生:是把平行四边形转化成长方形来计算的。把平行四边形沿着它的高剪下来,平移到另一边,这样就拼成了一个长方形。

师:那么转化后的长方形的长与宽和平行四边形有什么关系?

生:长方形的长相当于平行四边形的底,宽相当于平行四边形的高。

师:棒极了!请同学们看大屏幕。(展示平行四边形转化成长方形的过程。)那大家还记不记得三角形、梯形它们是怎样转化的?(课件演示三角形、梯形转化成平行四边形的过程。)

师:通过这些图形的转化,你发现了什么?

生:把图形转化成我们学过的图形。

师:嗯,不错,是运用了转化的方法,看来这是个不错的方法,帮了我们很多忙!

3、创设生活情境

师:现在请同学们看大屏幕。请大家认真观察这幅图,说说从图中你发现的数学知识。(多媒体展示教材第16页上主题图。)

生1:我发现了喷水头转动一周所走过的地方刚好是一个圆形。生2:喷射的水的距离相当于圆半径,也就是5米。生3:周长也就是喷水所走过的路线。生4:我补充一点,喷水头相当于这个圆的圆心。

师:大家的发现真多,那么你们说说这个圆形的面积指的是那部分?

生:被喷到水的草坪大小就是这个圆形的面积。

师:也就是说圆所围成的平面的大小是圆的面积。(课件出示)那发现了这么多数学知识,你想提什么问题吗?

生1:这个喷水头转动一周的周长是多少?生2:所喷洒的草坪面积是多少?也就是这个圆的面积是多少?

4、导入新课

师:我们已知道圆的面积是圆所围成平面的大小,那怎样计算圆的面积呢?这就是我们今天要学习的内容。(板书课题)

二、引导探究,获取新知。

1、估计圆的面积大小。(多媒体出示教材第16页“估一估”:半径是5米的圆的面积是多少?)师:请同学们认真看题目,与同桌说说你是如何估算的?

生1:我是这样估计的,这个圆的面积比圆外的大正方形的面积小,而比圆内的小正方形的面积大,大正方形的面积是100平方米,小正方形的面积是50平方米,那么这个圆的面积大约在50~100平方米之间。生2:我先算了四分之一个大正方形的面积是25平方米,而圆外角落里的面积约为5平方米,那么四分之一个圆的面积约是20平方米,整个圆的面积大约就是80平方米。

师:哦,你把范围缩小了,估得真不错!

生:我是这样估算的,我先算了圆外四个角落的面积约为20平方米,用大正方形的面积100平方米减去20平方米等于80平方米。所以我估计这个圆的面积也是80平方米。

师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果。如果我们遇到更大的圆,比操场还大的,那还能用这种方法吗?有什么更好的方法吗?

生1:如果知道圆的面积计算公式就好了。生2:我想能不能把圆也转化成我们学过的图形来计算。

师:对了,最直接最方便的就是用圆的面积计算公式来算。刚才怀洋同学说得很好!想把圆转化成我们学过的图形来计算,真不赖!接下来我们一起来探索圆的面积计算公式是怎样的?

2、探索圆的面积计算公式

(1)动手操作

师:那么大家想把圆转化成什么图形呢?请拿出你们课前准备好的圆,和小组里的同学剪一剪,拼一拼。看看能拼成什么图形?

(2)指名汇报,实图展示。

师:通过刚才同学们的相互协作,相信你们一定取得了不小的成果。下面请小组派代表上台来展示一下所拼成的图形。

生1:我们组把圆平均分成8份,拼成了个类似平行四边形的图形。生2:我们组是把圆平均分成16份,也拼成了个类似平行四边形的

图形。

师:现在请同学们观察一下,剪成8份和16份所拼成的图形有什么变化?

生:分成16份的拼成的图形更像平行四边形。

(3)操作反思

师:你们有什么发现?

生:要想拼成的图形更接近于平行四边形,可以把圆分的份数再多一些。

师:也就是说如果我们继续分下去,分成32份、64份,那么拼成的图形就越接近于平行四边形。现在我们让电脑来帮忙继续分下去,看看是不是像我们想的那样。

生:我发现了当把圆分成64份时拼成的图形完全可以算是个长方形了。

师:你观察得真细致!那我们完全可以大胆猜测,如果我们继续分下去,拼成的图形就越接近于长方形了。通过剪拼,我们发现,圆曲线的边展开了,分的份数越多,展开来圆的边就越直。这就是化曲为直的方法。

师:你们还有别的拼法吗?

生1:我们小组把圆平均分成了16份,不过是把圆转化成了类似于三角形的图形。

生2:我们小组也是把圆平均分成了16份,拼成的是个近似于梯形的图形。

师:真不错!你们想到的方法真多!可以把圆转化成平行四边形、长方形,也可以转化成三角形、梯形。那我们今天就来探索把圆转化成平行四边形或长方形来推导它的面积公式。

(4)思考讨论,观察汇报(课件呈现问题并讨论)

师:圆与转化成的长方形或平行四边形之间有怎样的关系?

生:通过刚才的动手剪拼,我认为把圆转化成长方形或平行四边形,它的形状变了,面积没变。其它小组的同学也是一样的看法吗?

生1:我还想补充一点,它的周长也变了。生2:圆的面积和长方形的面积相等。

生3:拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。(多指名几位同学回答,让展示图的同学上台拿着图边指边说,最后师课件演示)

师:你们能否用长方形的面积公式推导出圆的面积公式,并说说你的理由。

生:因为长方形的长相当于圆的周长的一半,宽相当于半径,根据长方形的面积等于长乘宽,我可以得出,圆的面积等于圆周长的一半乘半径。

师:你们听明白了吗?再请几位同学来说说。

生:把圆转化成长方形,面积是相等的,长方形的长相当于圆周长的一半,宽相当于半径,所以圆的面积等于圆周长的一半乘半径。(圆周长的一半用字母表示,面积也用字母表示)

师:说得真好!老师也听明白了。(教师根据学生汇报有序地整理板书。)

板书:长方形的面积=长×宽

↓↓↓

圆的面积=圆周长的一半×半径

s=πr(c/2)×r

=πr2

(5)小结

师:现在要求圆的面积是不是很简单了,知道什么条件就可以求出?生:半径。

师:那我们就利用这个公式回过头来算算刚才这个喷水头转动一周所喷洒的圆形草地的面积是多少?谁愿意上台来做做?(指名板演,讲评时说清算法。重点指出求圆面积只需要知道半径即可。)现在请大家来看看这段话,你能把它补充完整吗?(课件呈现问题和答案)

今天学习了《圆的面积》,我知道了把一个圆平均分成若干份,可以拼成一个近似的长方形,长方形的长相当于圆的(),宽相当于圆的(),因为长方形的面积=长×宽,所以圆的面积公式表示为()。

三、练习应用,巩固新知。

师:现在,你们想不想利用刚刚学到的知识解决一些实际问题呢?有信心吗?

1“试一试”第一题指名板演,讲评时说清算法。2“试一试”第二、三题

师:观察一下,这题和第1题有什么不一样的?谁愿意上台来做?

(集体讲评,请板演的同学说说如何算的?)

生1:图中只给出了直径,要求圆的面积首先得知道半径,所以我先求出圆的半径等于0.1分米,再根据圆的面积等于圆周率乘半径的平方求出圆的面积。生2:第三题已知周长,我也是先求半径。根据圆周长等于圆周率乘半径乘2,算出半径等于周长除以圆周率再除以2等于1米,再根据圆面积等于圆周率乘半径的平方等于3.14乘1的平方求出面积。

四、全课总结。

师:短短的40分钟很快就过去了,通过这节课的学习,你有什么收获?有什么不明白的地方?

生1:我知道了圆的面积公式。生2:我知道了怎样求圆的面积。生3:我懂得了要求圆的面积需要先知道它的半径。生4:原来是把圆转化成长方形或平行四边形推出它的面积公式的。生5:我的收获是当我们碰到不能解决的问题时,可以把它转化成学过的知识来解决。

师:大家的收获真不少!我们不仅学会了求圆的面积,而且运用转化的方法推导出了圆的面积公式,这是同学们的第一个了不起;另外,我们能从生活中发现数学问题并应用所学知识解决问题,这是第二个了不起!老师希望你们继续留心观察我们的生活,从生活中发现数学问题并想办法取解决它。

五、布置作业:教材p19练一练第1~5题。

北师大版六年级数学上册《圆的面积》课堂教学实录篇2

一、说教材:

圆是曲线平面图形。《圆》这部分内容是在学生学过了一些常见平面图形的认识,有关平面图形的周长和面积以及在低年级直观认识圆的基础上教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时也渗透了曲线图形和直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决实际简单问题的能力,也为以后学习圆柱、圆锥等知识打好基础。

《圆的面积》是在学生学过了圆各部分名称的认识、圆周长的计算和对平行四边形、三角形、梯形等平面图形面积公式的推导的基础上教学的。圆面积公式的推导本节课的重点和难点。在学生经过推导得出圆的面积计算公式后,就要求他们能利用面积计算公式来计算有关的题目,解决一些简单的实际问题。

教材的组织处理:教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。在引导学生推导圆面积的计算公式时,教材采用实验的办法,先把圆16等分,拼成一个近似的平行四边形,再把圆32等分,拼成一个近似长方形。使学生看到分割的份数越多,拼成的图形就越接近于长方形。当等分的份数达到无限,即把圆平均分成无数份时,拼成的图形就是长方形。然后分析拼成的长方形的长、宽与圆的周长、半径之间的关系,由长方形的面积计算公式推导出圆的面积计算公式s=πr²。然后引导学生观察公式,得出结论:要求圆的面积,必须知道半径,如果半径不知道,就要先求半径。最后要求学生能够利用圆的面积计算公式来解决一些简单的实际问题。

教学目标及理论依据:1、认知目标:通过“几何画板”的操作,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。

2、能力目标:培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力。

3、情感目标:通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力;同时让学生接触并更能理解极限转化等数学思想方法。

二、说教法:

教学方法设计及理论依据:

1、创设生活化的学习氛围。

围绕真实世界中问题的解决而创设问题情境,利用“武进城区的房子又涨价了”这一社会热点问题,引出开发商征地,要求进行面积核算、地皮估价。引导学生从身边的数学问题入手,激发学生学习积极性,并由学生通过自己的讨论提出问题,引出如何正确计算圆的面积这个学习内容。

2、组织学生自主探究。

(1)引导估算和估价:建议学生利用紧贴在圆外的正方形进行估算付钱,培养学生的估算意识和初步的估算能力。并用“假如你是房地产开发商,你肯不肯付这么多钱?”为问题,激发学生求圆形地皮的精确面积的欲望,帮助学生树立初步的经济意识。

(2)指导网上探究:指导学生网上搜索所需资料,自己利用“几何画板”软件中“圆的面积公式的推导”这一课件推导圆的面积公式,通过观察、操作等实践活动,运用多种感官参与学习活动,接受转化的数学思想,理解和掌握圆的面积公式,并进行合作交流。

3、帮助学生意义建构。

给出未标出圆心的圆,要求学生求出面积。设计“智力大冲浪”的题目,“假如老师给你一根绳子,长31.4米,允许你在大学城附近任意圈一块地,你有几种圈法?你能求出它们的面积吗?你有什么发现?”在复习旧知的同时,又检验新知识的掌握情况。接着提出,“假如这块地真的送给你,你会怎样为自己设计一个美丽的家园?”激发学生利用信息技术进行创造性设计的热情,培养学生应用计算机的能力。同时让他们对各种几何图形进行拼接、组合、优化,从而感知生活中到处都存在数学,生活和数学密不可分。

4、参与课程整合。

(1)利用多媒体计算机网络及“几何画板”软件作为辅助教学手段,帮助学生突出重点、分解难点。(2)留下疑问,“假如这块地真的送给你,你将会怎样为自己设计一个美丽的家园?”一方面激发学生继续使用信息技术的兴趣,培养他们应用计算机的能力。另一方面激发学生进行创新设计的热情。

教学手段及理论依据:

1、书面形式提供给学生搜索策略和课件操作说明,以便学生课上快速查找所需资源,正确操作课件。

2、提供现成的“几何画板”课件——“圆的面积公式的推导”,供学生操作圆面积公式的推导过程。

3、提供计算机供学生网上搜索,动手实验,进行网络交流。

4、提供书本和草稿纸进行有关练习。

三、说学法:

学习方法指导及理论依据:

为了体现学生学习的主动性,教师准备引导学生采用下列方法:

(1)估算法:引导学生估算,培养学生的估算意识和初步的估算能力。

(2)自主探究法:让学生登陆相关网站搜索所需资料,自己利用现成的“几何画板”课件对圆面积进行推导、演示、观察、思考,加深学生对于公式由来的理解和掌握。鼓励学生尝试应用信息技术进行创造性设计,感知几何图形在现实生活中的大量应用,加强数学与社会生活的联系,同时培养学生应用信息技术索取新知识、解决问题的各种能力。

(3)合作交流法:通过合作组成员之间相互演示、相互帮助,提高课堂学习效率,发展学生的集体感、友谊感、同情感。

(4)练习法:学生利用已学到的面积计算公式来解决生活中的一些简单的实际问题,了解圆面积计算公式在现实生活中的应用。

学法手段及理论依据:

1、要求学生课前预习学习内容,寻找好合作学习伙伴,以便提高课堂学习效率。

2、要求学生登陆相关网站,搜索“几何画板”软件中的现成课件——“圆的面积公式的推导”,自己动手操作圆面积公式的推导过程。

3、利用网络呈现学习成果。

4、合作小组成员进行推导过程的演示,手把手地教会不会推导的学生,使所有学生共同进步,提高课堂教学效率。

5、利用书本和草稿纸进行有关练习。

6,学生提供课前搜集到的生活中有关求圆面积的事例在课上使用。

四、说教学过程:

1、创设问题情境,激发学生学习兴趣。

利用社会上的热门话题,武进城区的房子又涨价了,请出一位房地产开发商购买圆形地皮,设计了一套圆柱形公寓,给出每平方米地皮的价格是850元,要学生为这块地皮估价。让学生通过讨论、思考,得出:要给地皮估价,还必须知道圆形地皮的面积。

2、组织学生探索,尝试解决问题。(1)引导学生进行估算和估价。建议学生利用紧贴在圆外的正方形进行估算付钱,培养学生的估算意识和初步估价能力。又以“假如你是房地产开发商,你肯不肯付这么多钱?”为问题,激发学生求圆形地皮的正确面积的欲望,帮助学生树立初步的经济意识。(2)、回忆思考,寻找办法。从对三角形、梯形等平面图形的面积计算公式的推导过程的回忆,引出思考问题:圆是否也可以转化成学过的图形来计算面积?(3)、教师利用课件进行操作示范并讲解,让学生知道如何对圆的面积进行推导:拖动点d,把圆4等分,双击“分开”、“拼合”按钮,看看什么变了,什么没有变?再拖动点d,把圆6等分……(4)引导学生网上搜索所需资料。让他们自己利用课件,拖动点d,对圆进行等分、拼合,观察思考:“什么变了,什么没有变?当圆被等分的份数越来越多的时候,圆被转化成了什么图形?当等分的份数达到无限的时候,圆怎么样了”等问题,然后找出圆与长方形之间的对应关系,推导得出圆的面积公式。并以“你还能把圆转化成别的什么图形来进行计算吗?”对学生的进行发散性思维训练。

3、学生合作交流,呈现经验总结。学生通过校园网进行共享,交流学习成果。合作小组成员也可以互相演示、互相帮助。让学生利用网络工具等多种形式进行合作交流,培养他们的合作意识,发展他们良好的人际关系。

4、运用所学知识,解决实际问题。完成开发商征地的正确面积计算和付款计算。要求学生联系生活说说,生活中还有哪些地方也要进行圆面积的计算?设计难易层次不同的练习题(允许小组合作进行问题的解答),培养学生的创新思维能力:为了培养学生应用知识有创意地解决实际问题的能力,我给出未标出圆心的圆,请学生想想怎样求出它的面积?引导学生说出先对折求出直径,或两次对折求出半径,或量出圆的周长,然后再求圆的面积,既复习了旧知,又培养学生的发散性思维能力。针对学生的兴趣,我还设计了“智力大冲浪”的题目:假如老师给你一根绳子,长31.4米,允许你在大学城附近任意圈一块地,你有几种圈法?你能分别求出它们的面积吗?你有什么发现?让学生充分想象,圈出不同的平面图形,并用学过的知识尽量求出各自的面积,让学生通过自己的观察去发现规律:在周长相同的情况下,圆的面积最大。使得复习旧知识的同时,又检验了新知识的掌握情况。

5、联系生活总结,拓展延伸课外。圆的面积计算公式是如何推导出来的?求圆的面积必须知道什么条件?如果不知道该怎么办?然后,我再提出:假如这块地真的送给你,你将会怎样为自己设计一个美丽的家园?一方面培养学生的创新设计能力,激发学生利用信息技术继续探索新知识,进行创造性设计的热情,培养学生熟练应用计算机的能力;同时让他们对各种几何图形进行拼接、组合、优化,从而感知生活中到处都存在数学,生活和数学密不可分。

五、在课堂教学中使用“几何画板”。

1、应用“几何画板”,突出重点,分解难点。

对圆面积公式的推导是本节课的重点和难点。在课堂教学中,我设计了应用“几何画板”这一便捷的交流工具,将学生难以理解、用语言又无法表达得很清楚的圆的面积公式的推导过程、曲线平面图形向直线平面图形转化的过程,以形象、直观、快捷的方式表现出来,大大优化了教学过程,提高了教学效率。

2、应用“几何画板”,能够促使学生主动地学、生动地学,体现了学生学习的自主性。

让学生应用“几何画板”亲自动手操作,对圆进行份数越来越多地等分、拼合,推导出圆的面积公式,能够极大地激发了学生的学习兴趣和学习主动性。学生在应用现成的“几何画板”课件——“圆的面积公式的推导”进行圆面积公式推导时,接受了等分的份数达到无限时,圆被转化成了长方形这一事实;理解和掌握了圆的面积公式的由来;自己发现了生活中的有用数学;进一步了解了怎样用以前学过的解决问题的方法来解决新问题。而且在数学教学中,在应用“几何画板”改变学生的学习方式的同时,还可以更好地培养学生空间想象能力、逻辑推理能力以及创造性思维能力,为他们今后的发展打下良好的基础。

3、利用“几何画板”,可以使学生自主地选择学习伙伴和学习结果的交流形式。

学生可以把自己的学习成果在网上发送给教师和其他伙伴,也可以干脆几个人坐在一起演示圆面积公式的推导过程,或者手把手地帮助、指导他们的伙伴进行操作。另外,使用“几何画板”,有利于教师及时地了解学生的学习情况,也有利于学生共同学习、提高课堂学习效率,发展学生间良好的人际关系。

北师大版六年级数学上册《圆的面积》课堂教学实录篇3

圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点

一、故事激趣,渗透“转化重视自主探究,发挥学生主体性。

教学“圆的面积计算公式推导时,故事激趣,渗透“转化我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。

二、大胆猜测,激发探究

在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造做好知识的准备。

根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓

三、演示操作,加深理解

圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

北师大版六年级数学上册《圆的面积》课堂教学实录篇4

一、教学内容:小学数学北师大版六年级上册第一单元“圆”的第三节——《圆的面积》

二、教材分析

圆的面积是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。而圆这样的曲边图形的面积计算,学生还是第一次接触到,如果学生完全自主地探索如何把圆转化成长方形或其他平面图形是有很大难度的,所以教材首先出示了估算图,再让学生利用学具进行操作,让学生自主发现圆的面积与拼成的长方形的面积的关系,推导出圆的面积计算公式。所以本课的教学活动将化曲为直和极限的数学思想纳入到学生原有的认知结构之中,从而完成新知的构建。

三、学情分析

学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。

四、教学目标

1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

3、在估一估和探究面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

五、教学重难点

教学重点:圆面积计算公式的推导和应用

教学难点:理解把圆转化为平行四边形,长方形推导出圆的面积的计算公式的过程。

六、教具准备:多媒体课件,等分好的圆形纸片。

七、教学流程

(一)创设情境,激发兴趣。

师:红岸公园为了减轻工人们的负担,在公园的草坪上安装了许多个自动喷水头,它喷射的距离为5米,喷水头转动一周是什么图形?

(生回答:圆形)

师:喷水头转动一周可以浇灌多大的面积呢?(课件演示喷射的过程)

这个面积就是谁的面积?(圆的面积)

(板书:定义:我们把圆所占平面的大小叫做圆的面积)

同学们会求圆的面积吗?这节课我们就来研究这个问题。(板书:圆的面积)

[设计意图:创设问题情境让学生在生活中发现问题,激发学生探究新知的兴趣、欲望,从而主动自觉地学习新知]

(二)尝试估算、探究思考。

师:这个圆的面积到底有多大呢?我们先来估算一下这个圆的面积。

(课件出示16页图,将这个圆置于边长是10米×10米的正方形中)请同学们仔细观察,先试着估算一下这个圆的面积。

学生独立思考,师巡视。

学生交流估算的方法:

1。利用正方形的面积估算,大的正方形的面积是100平方米,小正方形的面积是50平方米,圆的面积在大正方形和小正方形的面积之间,即50平方米<圆的面积<100平方米。

2、利用数格子的方法估算,先数出四分之一个圆的面积约是20平方米,整个圆的面积约是80平方米。

我们估计了半天,也没有得到精确的数值,那么,它一定有一个具体的计算方法,就像圆的周长=dπ或2πr一样,我们继续往下探究。

[设计意图:让学生通过独立思考,初步尝试解决的方法,为后面的深入探究作好辅垫]

(三)合作交流,探索规律

1、由旧知引入。

师:同学们还记得我们在学习平行四边形、梯形面积时是怎样推导公式的吗?我们利用的就是把新的图形经过分割、拼合等方法转化成我们所熟悉的图形。那么,我们能否也用同样的方法推出圆面积的计算公式。

[设计意图:让学生回忆旧知,引导学生利用旧知类比迁移。为学生打开思路,找到了继续往下探究的方向,对由直线图形过度到曲线图形有了初步的感知。]

2、探究公式

(1)学生操作:

师:请大家拿出圆片,把它等分成8份,再分成16份,然后和组内成员剪一剪、拼一拼,看看能拼成什么图形。思考:拼成的图形和圆形有什么关系?

学生操作,教师巡视。

(2)学生汇报:可拼成平行四边形、长方形、梯形。(3)以长方形和平行四边形为例:师一边倾听一边课件演示拼的过程。

(4)操作思考:

学生接着剪拼32等分的圆形,边拼边观察和16等分的圆拼成的图形进行比较,你发现了什么?(生回答:更接近平行四边形和长方形)

(课件演示拼的过程,再现等分16份的圆拼成的图形)

(5)如果把圆等分为64份,128份……大家想拼成的图形会怎么样?

(生:分的分数越多拼成的图形越接近长方形)

(6)观察思考:请同学们看大屏幕,接成的近似长方形的长和宽和圆的哪部分相等。

(学生观察、思考,小组交流一下。)

生:长方形的长相当于圆周长的一半(πr),长方形的宽相当于圆的半径(r)。

师:长方形的面积公式为s=长×宽,那么圆的面积公式应怎样写?

生:s=长×宽

=πr×r=πr2

师:πr2中r2表示r×r即2个r相乘。

师:我们终于找到了圆的面积和半径的关系。

[设计意图:教师放手让学生自己拼剪,为学生提供了解决问题的方法和途径,并面向全体学生,促进不同层次的学生在原有水平上得到不同程度的发展与提高,培养了学生的空间想象力。]

四、巩固强化,应用拓展。

1、计算喷水头转动一周浇灌的面积是多少?

(学生利用公式进行计算,师巡视)(强调估算的作用)

2.已知圆的直径0.2分米,求圆的面积。

3.北京天坛公园的回音壁是闻名世界的声学奇迹,它是一道圆形围墙。圆的直径为65.2米,周长与面积分别是多少?

4.有一圆形蓄水池。它的周长约是31.4米,它的占地面积约是多少?

5.教材19页第5题。

[设计意图:让学生灵活掌握圆的面积教师大胆放手,让学生独立解答,经过尝试,他的观察力,动手操作能力想象力都会得到进一步的发展。]

五、总结收获,激励结束(略)

北师大版六年级数学上册《圆的面积》课堂教学实录篇5

揭示课题师:前面我们认识了圆,学习了圆的周长,今天学习“圆的面积”。(教师板书,学生齐读)      师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?      生:这堂课我们要学习圆的面积是怎样求出来的。      生:学生圆的面积公式。      师:你们知道圆的面积公式后,你们还想到什么问题?      生:圆的面积公式根据什么推导出来的。      师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。(出示小黑板上的板书,学生齐读。)1. 计算圆的面积公式是什么?2. 这个公式是怎能样推导出来的?      [评:这种揭示课题,设计新颖,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标 。]导入  新课      师:现在请大家回忆一下,我们以前学过哪些基本图形的面积计算。      生:我们已经学过长方形、正方形、平行四边形、三角形、梯形的面积计算。(教师随着学生的回答,逐一用投影机放出上述图形)。      师:上面这五种图形和今天学习的圆形有什么显著的区别?      生:上面五个图形是由线段围成的,下面的圆形是由曲线围成的。      师:因为圆是由曲线围成的,计算圆的面积就比较困难了。能不能直接用面积单位去量呢?      生;它是圆的,用面积单位直接量是有困难的。      师:究竟用什么方法,请大家阅读课本,在课本中寻找答案。(学生阅读课本后,纷纷举手要求回答)      生:我们可以用图形转化的方法,求圆的面积。      师:这个办法很好。那么把圆形转化成什么图形呢?      生:长方形。      师:以前我们学习的哪些图形也是转化成长方形,来推导出面积计算公式。    (用投影机放出几种图形的转化图解,边出示,边讨论)      [评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]进行新课      师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4r2表示,你们观察一下这个圆的面积等不等于4r2?      生:不等。      师:为什么?      生:因为,这个圆面积还要加上外面的4小块,才是4r2。      师:这个圆的面积比4r2小,等不等于3r2呢?      生:看上去比3r2又要大一些。      师:现在我们可以大致估计一下,这个圆面积要比3r2多一点,也就是r2的3倍多一点。至于多多少,现在就来推导圆面积的计算公式。    (教师要求学生把预先准备好的一个圆分成16个相等的扇形,拼成一近似的长方形,学生可以一边看书,一边操作)      师:同学们观察一下,拼成的是什么图形?      生:近似于长方形。      师:说得很好,为什么说近似长方形,哪里不太像?      生:长边都是许多弧形组成,不是直线。      师:这里我们把圆分成16等分,还能分吗?      生:可以分成32等分、64等分、128等分……      师:究竟能分多少份呢?      生:无数份,可以永远分下去。      师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。师:把圆转化成长方形后,这个长方形的面积怎样计算?     (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)  长方形面积=长×宽 ↓↓    圆的面积=圆周长的一半×半径 ↓= πr   × r  =πr2    师:现在可以回答前面提出的问题,圆面积是以半径为边长的正方形面积多少倍呢?      生:π倍。      生:约等于3.14倍。      师:刚才我们的猜想是正确的,圆面积的3r2多一点,现在推导出来的圆面积公式是πr2,也就是约等于3.14r2。  师:现在请同学们把圆面积公式的推导过程再完整地说一遍。    (学生回答略)   [评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]巩固新课      采用抢答比赛的形式巩固新课。把学生分成4组,每组的底分为100分,答对1题加10分,答错1题扣10分。抢答题用投影片逐题出现:     (1)计算圆的面积必需要具备哪些条件?     (2)一个圆的直径与正方形边长相等,圆和正方形哪个面积大?     (3)半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?     (4)圆能不能转化成三角形,来推导出求圆面积的公式?     (出示第4题前,教师宣布:第4题比较难,要先用学具摆,用相等的16个扇形先摆成三角形,然后观察,再写出推导过程。谁回答正确得30分。学生情绪高涨,都积极思考,抢着摆学具,抢着到黑板上写出推导的算式。)   三角开面积= 底×高÷2=×4r÷2   =× 4r÷2   =2πr× r÷2    =πr2      [评:用抢答形式巩固新课,设计新颖,激发学生兴趣,调动积极性,把课堂教学推向了高潮。特别第4题作为思考题,有助于发展学生的创造性思维。]课堂小结      师:这堂课大家学到了什么?有什么收获?      学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。      叮铃铃,下课钤响了,这堂课在轻松愉快的气氛中结束。      [评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

北师大版六年级数学上册《圆的面积》课堂教学实录篇6

“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。在课堂中教师如果将新课程的理念转化为实际的教学行为,有时就会体会到什么叫{做故“无心插柳柳成荫”教学目标的提出有利于学生明确本节课的教学意图,激发学生学习的需要,以便更好的参与到学习活动中去。在两个班的巡讲过程中,我深刻体会到这一点,当我提出“看到课题后,你们认为这节课我们要解决什么问题呢?“学生积极发言”想解决圆的面积如何计算;想解决圆的面积的计算公式是如何推导的;想学习怎么计算圆的面积等等”。

学习目标明确后,我发现孩子在研究的时候都井然有序,没有不知道该如何入手的,都明确自己在讨论什么,要解决什么问题。在整个巡讲教学过程中,我发挥了教师的主导作用,突出了学生的主体地位,引导学生主动探究、研究,获取解决问题的各种方法,为学生提供充足的时问、空间、材料,教学围绕学生的学习活动展开。抓住宝贵时机引导学生理解新方法,使新知识迎刃而解。两个班讲下来我的收获是教学中的应变能力提高了,不同的学生给了我不同的体会。当然也发现了自己的不足:还是不敢放手把主动权交给学生,即使放手了也牵着一点,这是在今后的的工作中应继续改进的地方;在提出一个问题后应给予学生一定的思考时间,不要过急。在今后的教学中我会深深记住这次巡讲,继续改进自己的教学水平。

北师大版六年级数学上册《圆的面积》课堂教学实录篇7

学会反思方能成长,以下是关于五年级数学《圆的面积》教学反思,欢迎大家阅读参考!

《圆的面积》教学反思

《圆的面积》是小学数学教学中的一个难点,又是学习圆柱与圆锥的基础,圆面积公式的推导过程运用了“极限”的思想和方法,这对小学生来讲是深奥难懂的。教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形(主要是长方形)来计算面积,引导学生自主推导出圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂问题的策略。

学习此知识之前,学生已初步认识了圆,理解了面积的含义,并且掌握了长方形、正方形、平行四边形、三角形、梯形的面积计算公式的推导过程,因此学习圆的面积公式推导过程时只需要教师启发、点拨学生依然从转化的思想入手,将圆转化为已学过的图形进行计算,然后通过等量代换得到圆面积公式。因此,新课内容必须从贴近学生生活的情境出发,激发学生的探究欲望,降低内容的抽象性,引导学生用转化的方法推导出圆面积的计算公式。

本节课,我认为我主要有以下几个亮点:

一、重视自主探究,发挥学生主体性。

在教学“圆的面积”计算公式推导时,我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,有效地体验从猜想——实践验证——分析——归纳总结的科学探究问题的方法。看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。例如:想一想以前咱们学过了哪些图形的面积计算公式?(长方形、正方形、平行四边形、三角形、梯形)这些面积公式都是怎样推导出来的?(生边回答课件边演示平行四边形、三角形、梯形的面积公式推导过程)从这些面积公式推导过程中你得到了什么启发?(都先转化成长方形,可否将圆也转化成长方形呢?)怎么转化?(生讨论,看书等后回答:把圆分成若干等份,拼成长方形),你想分成多少等份?(16等份)多点行不行?(众说不一,同桌讨论后回答:行)为什么呢?(分的等份越多,拼成的图形就越接近长方形)如果越少呢?(拼成的图形就越不象长方形)如果分成两等份呢?(用两个半圆试拼)(那就拼不成长方形了)现在我们将这个圆分成16等份,请两个同学上台拼一拼,大家首先看圆周围的黑线表示圆的什么?(周长)这条红线呢?(半径)这两条线很顽皮,在拼的过程中要跟我们玩捉迷藏,一定要盯住它们各藏到哪儿了?(学生操作)他们先把两个半圆展开,然后犬牙交错地拼在一起,成了什么图形啦?(长方形)是精确的长方形吗?(不是,是近似的)为什么?(上下两条长边上有许多小包包)对,两条长边不是直的,是波浪形的,怎样才能使它接近一条直线呢?(把圆分的等份越多,就越接近直线)好,现在我们就将圆分成32等份拼一下,为了便于观察,我们用课件来演示。同样用黑线表示周长,红线表示半径。也学这两位同学这样拼起来,成了一个什么图形?(几乎是一个长方形了)这样一拼之后,什么变了?什么没变?(形状变了,面积没变)现在大家找一找,黑线和红线各藏到哪里去了?(黑线分成了两段,到了长方形的上下两边,红线到了长方形的右边)各成了长方形的什么呀?(表示圆周长的一半成了长方形的长,表示半径的红线成了长方形的宽)(老师对应地板书)长方形的面积等于长乘以宽,那么圆的面积等于什么呀?(学生互相合作,推导出圆面积公式)(老师对应板书并熟读公式)好,现在大家用学具拼一拼,看还能拼出什么学过的图形?(可以拼出近似三角形、平行四边形、梯形)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨。

二、运用多媒体手段,激发学生学习兴趣。

在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣,为学生今后圆锥,圆柱奠定了有力的基础。

三、练习坡度适当,由浅入深地掌握知识。

课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

课后设想:

圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。但回头想想,也可以把圆的面积分两课时来上,一课时是让学生操作,圆可以转化成什么图形?第二课时才深入地研究如何推导圆面积的公式,这样费时多些但对学生的能力开拓会更有好处。

北师大版六年级数学上册《圆的面积》课堂教学实录篇8

教学目标:

1、用转化的思想使学生能够理解并掌握圆的面积计算公式,学会利用圆的面积计算公式解答简单的实际问题。

2、通过圆的面积计算公式的推导及应用,培养学生知识迁移能力,观察发现能力,分析概括能力和解决实际问题能力。

3、通过本节课的学习,渗透转化数学思想,让学生体会到数学知识之间的内在联系,感受学数学的快乐。

教学重难点:理解圆的面积计算公式的推导过程及应用。

教学思路:直观引入,演示发现,学会应用。

教学过程:

一、激发兴趣,引出概念

1、回忆圆的周长概念及计算公式,引出圆的面积概念。

2、回忆学过平面图形的面积公式,例举某图形面积计算公式的推导过程。渗透转化数学思想,引出学生对圆面积计算公式推导的探究兴趣。

二、点题提出目标

1、圆的面积计算公式的推导。

(1)课件演示将圆平均分成若干份后,拼接成近似长方形的全过程。让学生不仅懂得圆平均分的份数越多,拼接成的图形越接近长方形;还了解到圆转化成近似长方形后形状发生了变化,但面积没有变化。

(2)学生分组尝试(或教师教具演示等)将圆转化长方形的全过程。让学生进一步感受转化的数学思想,并在操作(或观察)发现拼接成的近似长方形的长相当于圆的哪一部分;宽相当于圆的哪一部分。

(3)由长方形面积公式推导出圆的面积计算公式。

(4)小结:在一个圆里,圆的面积与半径有关系,知道了圆的半径就可以求出圆的面积。

2、教学例1题。

(1)出示例题,学生根据圆面积计算公式独立解决,集体评议。

(2)尝试练习,做一做第1题,练习二十四第3题等。

北师大版六年级数学上册《圆的面积》课堂教学实录篇9

本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到化。

1、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。

如揭示圆的面积定义,。基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的*,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。

2、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。

例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。

教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。

但是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应该改进的地方和努力的方向。

北师大版六年级数学上册《圆的面积》课堂教学实录篇10

教学目标:

1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2.使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

探索并掌握圆的面积公式,能正确计算圆的面积。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆的面积公式的推导图。

一、回顾旧知,引入新知

1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

学生回答,教师予以肯定。

2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

(板书:圆的面积)

设计意图通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

二、合作交流,探究新知

1.教学例7。

(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

(4)学生独立完成填空。

(5)猜测:圆的面积大约是正方形面积的几倍?

学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

(6)出示例7后两幅图,按照同样的方法进行计算并填表。

正方形的面积/

圆的半径/

圆的面积/

圆面积大约是正方形面积的几倍

(精确到十分位)

2.交流归纳:观察上面的表格,你有什么发现?

通过交流,明确

(1)圆的面积是它的半径平方的3倍多一些。

(2)圆的面积可能是半径平方的兀倍。

3.教学例8。

(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?

(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。

(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?

初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?

(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。

(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。

(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?

(8)根据学生的回答,教师板书

长方形的面积一长×宽

圆的面积=

(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

4.教学例9。

(1)出示例9,提问:有没有在生活中见过自动旋转*器?

(2)想象一下自动*器旋转一周后喷灌的地方是什么图形,*的最远的距离是什么意思。

(3)学生独立完成计算。

(4)集体交流。

5.教学例10。

(1)请同学读题,解读题意。

(2)找出题中的已知条件。

(3)分析解题过程。

(4)明确各个量之间的转化关系。

三、巩固练习,加深理解

1.完成“练一练”。

(1)学生独立解答。

(2)集体交流。

2.完成练习十五第1题。

(l)学生独立解答。

(2)集体交流。

3.完成练习十五第3题。

(1)学生列式后用计算器计算。

(2)集体交流。

4.完成练习十五第4题。

(1)学生独立解答。

(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。

5.作业:练习十五第2、5题。

四、课堂小结

师:通过今天的学习,你有什么收获?

学生发言,教师点评。

圆的面积

长方形的面积=长×宽

圆的面积=

北师大版六年级数学上册《圆的面积》课堂教学实录篇11

——《圆的面积》教学思路及教学课案评析

江苏省海安县洋蛮河镇新生小学(226625)谭拥军

“研究性数学学习”是我县教育局教研室小学数学组立项的市级教研课题。我有幸于在课题中期研讨会上得到了教研室陈今晨主任(江苏省特级教师)、仲广群主任的帮助和指导,为中期研讨会提供了一堂《圆的面积》研讨课,上后我的感觉是焕然一新,不同于以往自己上的课,课堂中学生的主体地位得到了大大的加强。

现又正值全国教育界对“研究性学习”全面展开探索之际,有感于此,特将该课的教学思路及课案加评析整理奉上,企盼各位专家及同行不吝指教。

一、关于研究性学习的基本认识

研究性学习是先进的最新的学习方式,它改变了传统课堂教学中学生被动接受知识的状况,在教师的组织引导下,让学习者以发现问题、分析问题到解决问题这一类似于从事科学研究的态度、精神和方法对待数学学习。

要求在教学过程中,教师力求不把现成的答案或结论告诉给学生,而是试图创设出某种问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、阅读自学、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是*学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者。

二、教学思路

在县教研室的陈今晨主任、仲广群主任和县实验小学许卫兵校长、教导处贲友林主任、教科室顾荣主任等专家的帮助指导下,在对研究性学习有了进一步认识的基础上,本着遵循研究性学习的课题指导思想,我的备课思路如下:

1、课始的圆面积的概念教学,我采取了淡化的处理。因为学生对面积已经有了一定的认识,没有必要花大气力研究揭示。而是在学生自己提出问题——圆的面积怎样求之后,顺水推舟的简单揭示了概念。

2、本课的重点在圆面积的公式推导上。我采取了先猜想,再探索研究,最后分析概括小结出公式的方式。在此过程中让学生讨论、操作、观察、比较,从而达成培养学生最基本的研究能力。

3、在探索研究的过程中,我的思路是猜想——设想——操作——

北师大版六年级数学上册《圆的面积》课堂教学实录(精选15篇).docx

将本文的Word文档下载到电脑保存

推荐等级

相关阅读

相关内容

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号