更新时间:2025-08-12 11:34:15
一、教学目的
1.使学生初步认识函数的图象.
2.使学生了解函数的列表表示法.
3.使学生了解函数的图象表示法.
4.使学生会用描点法画出简单函数的图象.
二、教学重点、难点
重点:介绍函数图象的初步知识.
难点:对于函数图象的认识.
三、教学过程
复习提问
1.一种豆子每千克售2元,写出买豆子的总金额y(元)与所买豆子的数量x(千克)之间的函数关系.(答:y=2x.)
2.在第一题的函数式中,谁是自变量?谁是函数?说出自变量的取值范围.(答:x是自变量,y是x的函数,x可取所有非负实数.)
3.由函数y=2x,填出下表:
(答:下一行:0,1,2,3,4,5,6.)
4.平面直角坐标系是怎样组成的?(答:在平面内画两条互相垂直的数轴,组成平面直角坐标系.)
5.什么是点的横坐标、纵坐标、坐标?(答:平面直角坐标系中一个点A在x轴上的坐标叫横坐标a,点A在y轴上的坐标叫纵坐标b,把a,b合起来,且a在前、b在后:(a,b)就是点A的坐标.)
6.点A的坐标如(5,4),又可以称作什么?(答:一对有序实数.)
7.坐标平面内的点与有序实数对的关系是什么?(答:一一对应关系.)
新课
1.函数的表示法——列表法.
通过上述1~3个问题的提问及学生的回答,由y=2x及表格,按照函数定义,对于x的每一个值,y都有唯一的值和它对应.这就告诉我们,上面的表格本身也表示了y与x之间的函数关系.于是我们把这种通过列表表示函数的方法叫列表法.列表法的优点:容易由自变量的值求出对应的函数的值.列表法的缺点:不能把一个函数在自变量取值范围内的所有值都列出来,所以有局部性;或所求的函数值是近似值.
2.通过上述复习提问第3~7题及学生的回答,我们把第3题的表中的x,y值对应地写出来,就得出了一列有序实数对:(0,0),(0.5,1),(1,2),(1.5,3),….这里强调学生要进一步明确“有序”的意义,(1.5,3),(3,1.5)是不相同的有序实数对.再联系到平面内的点与有序实数对的一一对应关系,于是我们借助平面直角坐标系,就可以把这些有序实数对转化为坐标平面内的点.这样就可以用平面内的图形来表示函数关系.
3.从最简单的函数y=x入手来分析及画出其图象.
(1)让学生完成x与y的对应值表.
(2)在有坐标格的小黑板上,把表中给出的7个有序实数对作为点的坐标,师生一道描出这7个点.
(3)分析函数y=x的特点:自变量与函数的值相等.它的任意一对对应值都可以表示成(m,m)的形式(m可取全体实数).借助坐标平面可知,表示(m,m)的点就是到x轴的距离与到y轴的距离相等的点.我们把x轴与y轴所划分的坐标平面的四个角叫象限角,依次有第一象限角,第二象限角,第三象限角,第四象限角.由平面几何知识可知,到一个角的两边的距离相等的点,它的轨迹是这个角的平分线.换一句话说,到这个角两边距离相等的点,都在这个角的平分线上;反之,在这个角的平分线上的所有的点,到这个角的两边距离都相等.于是函数y=x的整个图象就可以画出了.它是第一象限角和第三象限角的两个角的平分线,是一条直线.
4.对于函数图象要辩证地双向分析:图象上每一个点的坐标,都是这个函数的一对对应值;反之,每个坐标是这个函数的一对有序的对应值的点,都在这个函数的图象上.
5.函数的表示法——图象法.我们用图象来表示一个函数的方法,叫图象法.函数的图象法优点:形象、直观.缺点:求得的函数值是近似的.
小结
1.画函数图象的方法步骤:
(1)根据函数的解析式列出函数对应值表.
(2)用这些对应值作为点的坐标,在坐标平面内描点.
(3)把这些点用平滑曲线连结起来,可得函数图象.
2.函数的三种表示法:(1)解析法,(2)列表法,(3)图象法.
练习;选用课本练习(只要求列表、描点.)
补充例题
1.解答课本本章题图中的两个问题.
2.画出函数y=3x的图象.(只要求列表、描点.)
作业 :选用课本习题(只填表、描点,不要求连线.)
四、教学注意问题
1.注意双向思维的渗透与训练.比如,由函数的关系式可得函数图象;反之,由函数的图象也可表示函数关系,等等.
2.注意渗透转化思想方法.比如,把有序实数对转化为坐标平面内的点等等.
3.注意精微,要善于区分邻近概念,比如“实数对”与“有序实数对”虽两字之差,但意义不同.
教学目标 :
1、培养学生看图识图的能力.
2、在识图过程中,渗透数形结合的数学思想.
3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.
4、激发学生学习数学的兴趣,培养学生的探索精神
教学重点:培养学生看图识图的能力
教学难点 :渗透数形结合的数学思想
教学用具:计算机、投影机
教学方法:谈话法、分组讨论
教学过程 :
1、阅读习题13.3的第四题
学生阅读后,老师可以提问学生,分别回答:
下图是北京春季某一天的
2、提出看图说图的重要性
随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.
3、为学生提供相对丰富的素材,体会以图识性.
例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?
(读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).
从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.
如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.
而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.
例2、如图,是各月气温的分配图
能从图中找出气温最低的月份,气温最高的月份.
并判断出该地所处的气温带.
分析:最高气温在7月,最低在2月.气温曲线的
下限也在以上,即~之间,因此可判断出
该地位于亚热带.
(从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.
例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.
参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.
以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业 提前下发,也可以在上课时,由老师进行通俗的解释.
右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.
(1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线
(2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.
(3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.
(注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.
4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.
5、作业 :从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法.
教学目标:
1、培养学生看图识图的能力.
2、在识图过程中,渗透数形结合的数学思想.
3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.
4、激发学生学习数学的兴趣,培养学生的探索精神
教学重点:培养学生看图识图的能力
教学难点:渗透数形结合的数学思想
教学用具:计算机、投影机
教学方法:谈话法、分组讨论
教学过程:
1、阅读习题13.3的第四题
学生阅读后,老师可以提问学生,分别回答:
下图是北京春季某一天的
2、提出看图说图的重要性
随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.
3、为学生提供相对丰富的素材,体会以图识性.
例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?
(读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).
从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.
如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.
而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.
第12页
教学目标 :
1、培养学生看图识图的能力.
2、在识图过程中,渗透数形结合的数学思想.
3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.
4、激发学生学习数学的兴趣,培养学生的探索精神
教学重点:培养学生看图识图的能力
教学难点 :渗透数形结合的数学思想
教学用具:计算机、投影机
教学方法:谈话法、分组讨论
教学过程 :
1、阅读习题13.3的第四题
学生阅读后,老师可以提问学生,分别回答:
下图是北京春季某一天的
2、提出看图说图的重要性
随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.
3、为学生提供相对丰富的素材,体会以图识性.
例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?
(读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).
从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.
如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.
而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.
例2、如图,是各月气温的分配图
能从图中找出气温最低的月份,气温最高的月份.
并判断出该地所处的气温带.
分析:最高气温在7月,最低在2月.气温曲线的
下限也在以上,即~之间,因此可判断出
该地位于亚热带.
(从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.
例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.
参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.
以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业 提前下发,也可以在上课时,由老师进行通俗的解释.
右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.
(1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线
(2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.
(3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.
(注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.
4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.
5、作业 :从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法.
教学目标 :
1、培养学生看图识图的能力.
2、在识图过程中,渗透数形结合的数学思想.
3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.
4、激发学生学习数学的兴趣,培养学生的探索精神
教学重点:培养学生看图识图的能力
教学难点 :渗透数形结合的数学思想
教学用具:计算机、投影机
教学方法:谈话法、分组讨论
教学过程 :
1、阅读习题13.3的第四题
学生阅读后,老师可以提问学生,分别回答:
下图是北京春季某一天的
2、提出看图说图的重要性
随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.
3、为学生提供相对丰富的素材,体会以图识性.
例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?
(读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).
从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.
如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.
而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.
例2、如图,是各月气温的分配图
能从图中找出气温最低的月份,气温最高的月份.
并判断出该地所处的气温带.
分析:最高气温在7月,最低在2月.气温曲线的
下限也在以上,即~之间,因此可判断出
该地位于亚热带.
(从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.
例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.
参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.
以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业 提前下发,也可以在上课时,由老师进行通俗的解释.
右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.
(1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线
(2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.
(3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.
(注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.
4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.
5、作业 :从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法.
一、教学目的
1.使学生进一步理解自变量的取值范围和函数值的意义.
2.使学生会用描点法画出简单函数的图象.
二、教学重点、难点
重点:1.理解与认识函数图象的意义.
2.培养学生的看图、识图能力.
难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.
三、教学过程
复习提问
1.函数有哪三种表示法?(答:解析法、列表法、图象法.)
2.结合函数y=x的图象,说明什么是函数的图象?
3.说出下列各点所在象限或坐标轴:
新课
1.画函数图象的方法是描点法.其步骤:
(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.
一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.
(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.
(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.
一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).
2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.
小结
本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.
练习:①选用课本练习(前一节已作:列表、描点,本节要求连线)
②补充题:画出函数y=5x-2的图象.
作业 :选用课本习题.
四、教学注意问题
1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.
2.注意充分调动学生自己动手画图的积极性.
3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.
教学目标:
1、培养学生看图识图的能力.
2、在识图过程中,渗透数形结合的数学思想.
3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.
4、激发学生学习数学的兴趣,培养学生的探索精神
教学重点:培养学生看图识图的能力
教学难点:渗透数形结合的数学思想
教学用具:计算机、投影机
教学方法:谈话法、分组讨论
教学过程:
1、阅读习题13.3的第四题
学生阅读后,老师可以提问学生,分别回答:
下图是北京春季某一天的
2、提出看图说图的重要性
随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.
3、为学生提供相对丰富的素材,体会以图识性.
例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?
(读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).
从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.
如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.
而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.
例2、如图,是各月气温的分配图
能从图中找出气温最低的月份,气温最高的月份.
并判断出该地所处的气温带.
分析:最高气温在7月,最低在2月.气温曲线的
下限也在以上,即~之间,因此可判断出
该地位于亚热带.
(从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.
例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.
参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.
以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业 提前下发,也可以在上课时,由老师进行通俗的解释.
右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.
(1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线
(2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.
(3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.
(注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.
4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.
5、作业 :从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法.
教学目标 :
1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。
2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。
3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。
教学重点:
1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。
2、通过函数的性质及定义域范围求函数的最值。
教学难点 :
从实际问题中抽象概括出运动变化的规律,建立函数关系式
教学方法:讨论式教学法
教学过程 :
例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?
(1)几分钟让学生认真读题,理解题意
(2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。
解法(一)列表分析:
设从A校调到C校x台,则调到D校(12―x)台,B校调到C校是(10―x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。
根据题意:
y=40x+80(12-x)+30(10-x)+50(x-4)
y=40x+960-80x+300-30x+50x-200
=-20x+1060(4≤x≤10,且x是正整数)
y=-20x+1060是减函数。
∴当x=10时,y有最小值ymin=860
∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。
解法(二)列表分析
设从A校调到D校有x台,则调到C校(12―x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8―x)台,总运费为y。
y=40(12–x)+80x+30(x–2)+50(8-x)
=480–40x+80x+30x–60+400–50x
=20x+820(2≤x≤8,且x是正整数)
y=20x+820是增函数
∴x=2时,y有最小值ymin=860
调配方案同解法(一)
解法(三)列表分析:
解略
解法(四)列表分析:
解略
例2、公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件。经试销调查,发现销售量y(件),与销售单价x(元/件)可近似看作一次函数y=kx+b的关系
(1)根据图象,求一次函数y=kx+b的表达式
(2)设公司获得的毛利润(毛利润=销售总价―成本总价)为s元
试用销售单价x表示毛利润s;
解:如图所示
直线过点(600,400),(700,300)
∴400=600k+b
300=700k+b
k=-1,b=1000
∴y=-x+1000(500≤x≤800)
s=x(1000–x)-500(1000–x)
=1000x–x2–500000+500x
=-x2+1500x–500000(500≤x≤800)
小结:本节课试图让学生体会到函数的本质是对应关系。在实际生活中,影响事物的因素往往是多方面的,而且它们之间存在一定的关系。数学是研究现实世界的空间形式和数量关系的科学。对于实际问题我们抽象概括出它的本质特征,将其数学化、形式化,形成数学模型。这个过程既体现了数学的高度抽象性,又因其高度的抽象性决定了数学的广泛应用性。
作业 :略
探究活动
(1)在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米.
(2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元?
答案:
(1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x+y)+2x]=14×5,即
又x>0,y>0,14×5-(5+2)x≤14×3,
所以x=4时,y取最大值5.另三辆车行驶最远距离:(4+5)×200=1800(千米).
(2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则
所以45≤x≤55,即种蔬菜55亩,杂豆20亩,最大产值为121000元.
(3)某果品公司急需汽车,但无力购买,公司经理想租一辆.一出租公司的出租条件为:每百千米租费110元;一个体出租车司机的条件为:每月付800元工资,另外每百千米付10元油费.问该果品公司租哪家的汽车合算?
解设汽车每月所行里程为x百千米,于是,应付给出租公司的费用为y1=110x,应付给个体司机的费用为y2=800+10x.画出它们的图象,易得图象交点坐标为(8,8800).由图象可知,当x<8时,y1<y2;当x=8时,y1=y2,当x>8时,y1>y2.
综合上述可知,汽车每月行驶里程少于800千米时,租国营出租汽车公司的汽车合算;每月行驶里程大于800千米时,租个体司机的汽车合算.因此,该果品公司应先估计一下每月用车的里程,然后根据估算的结果确定该租哪家的汽车.
一次函数的图象和性质
一、目的要求
1.使学生能画出正比例函数与一次函数的图象。
2.结合图象,使学生理解正比例函数与一次函数的性质。
3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。
二、内容分析
1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。
2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。
三、教学过程
复习提问:
1.什么是一次函数?什么是正比例函数?
2.在同一直角坐标系中描点画出以下三个函数的图象:
y=2x y=2x-1 y=2x+1
新课讲解:
1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。
再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。
一般地,一次函数的图象是一条直线。
前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。
先看两个正比例项数,
y=0.5x
与y=-0.5x
由这两个正比例函数的解析式不难看出,当x=0时,
y=0
即函数图象经过原点.(让学生想一想,为什么?)
除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。
实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:
(1)先选取两点,通常选点(0,0)与点(1,k);
(2)在坐标平面内描出点(0,o)与点(1,k);
(3)过点(0,0)与点(1,k)做一条直线.
这条直线就是正比例函数y=kx(k≠0)的图象.
观察正比例函数 y=0.5x的图象.
这里,k=0.5>0.
从图象上看,y随x的增大而增大.
再观察正比例函数 y=-0.5x 的图象。
这里,k=一0.5<0
从图象上看,y随x的增大而减小
实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.
先看
y=0.5x
任取两对对应值.(x1,y1)与(x2,y2),
如果x1>x2,由k=0.5>0,得
0.5x1>0.5x2
即 yl>y2
这就是说,当x增大时,y也增大。
类似地,可以说明的y=-0.5x 性质。
从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。
一般地,正比例函数y=kx(k≠0)有下列性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小。
2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数
y=kx+b(k,b是常数,k≠0)
通常选取
(o,b)与(-
两点,
对于例l中的一次函效
y=2x+1与y=-2x+1
就分别选取
(o,1)与(一0.5,2),
还有
(0,1)—与(0.5.0).
在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线)y=kx+b
结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。
对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。
课堂练习:
教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。
课堂小结:
1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.
2.一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象.
3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).
四、课外作业
1.教科书习题13.5a组第l一3题.
2.选作教科书习题13.5b组第1题.
一次函数的图象和性质
一、目的要求
1.使学生能画出正比例函数与一次函数的图象。
2.结合图象,使学生理解正比例函数与一次函数的性质。
3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。
二、内容分析
1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。
2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。
三、教学过程
复习提问:
1.什么是一次函数?什么是正比例函数?
2.在同一直角坐标系中描点画出以下三个函数的图象:
y=2x y=2x-1 y=2x+1
新课讲解:
1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。
再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。
一般地,一次函数的图象是一条直线。
前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。
先看两个正比例项数,
y=0.5x
与y=-0.5x
由这两个正比例函数的解析式不难看出,当x=0时,
y=0
即函数图象经过原点.(让学生想一想,为什么?)
除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。
实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:
(1)先选取两点,通常选点(0,0)与点(1,k);
(2)在坐标平面内描出点(0,o)与点(1,k);
(3)过点(0,0)与点(1,k)做一条直线.
这条直线就是正比例函数y=kx(k≠0)的图象.
观察正比例函数 y=0.5x的图象.
这里,k=0.5>0.
从图象上看,y随x的增大而增大.
再观察正比例函数 y=-0.5x 的图象。
这里,k=一0.5<0
从图象上看,y随x的增大而减小
实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.
先看
y=0.5x
任取两对对应值.(x1,y1)与(x2,y2),
如果x1>x2,由k=0.5>0,得
0.5x1>0.5x2
即 yl>y2
这就是说,当x增大时,y也增大。
类似地,可以说明的y=-0.5x 性质。
从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。
一般地,正比例函数y=kx(k≠0)有下列性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小。
2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数
y=kx+b(k,b是常数,k≠0)
通常选取
(o,b)与(-
两点,
对于例l中的一次函效
y=2x+1与y=-2x+1
就分别选取
(o,1)与(一0.5,2),
还有
(0,1)—与(0.5.0).
在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线)y=kx+b
结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。
对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。
课堂练习:
教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。
课堂小结:
1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.
2.一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象.
3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).
四、课外作业
1.教科书习题13.5a组第l一3题.
2.选作教科书习题13.5b组第1题.
教学目标 :
1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。
2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。
3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。
教学重点:
1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。
2、通过函数的性质及定义域范围求函数的最值。
教学难点 :
从实际问题中抽象概括出运动变化的规律,建立函数关系式
教学方法:讨论式教学法
教学过程 :
例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?
(1)几分钟让学生认真读题,理解题意
(2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。
解法(一)列表分析:
设从A校调到C校x台,则调到D校(12―x)台,B校调到C校是(10―x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。
根据题意:
y=40x+80(12-x)+30(10-x)+50(x-4)
y=40x+960-80x+300-30x+50x-200
=-20x+1060(4≤x≤10,且x是正整数)
y=-20x+1060是减函数。
∴当x=10时,y有最小值ymin=860
∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。
解法(二)列表分析
设从A校调到D校有x台,则调到C校(12―x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8―x)台,总运费为y。
y=40(12–x)+80x+30(x–2)+50(8-x)
=480–40x+80x+30x–60+400–50x
=20x+820(2≤x≤8,且x是正整数)
y=20x+820是增函数
∴x=2时,y有最小值ymin=860
调配方案同解法(一)
解法(三)列表分析:
解略
解法(四)列表分析:
解略
例2、公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件。经试销调查,发现销售量y(件),与销售单价x(元/件)可近似看作一次函数y=kx+b的关系
(1)根据图象,求一次函数y=kx+b的表达式
(2)设公司获得的毛利润(毛利润=销售总价―成本总价)为s元
试用销售单价x表示毛利润s;
解:如图所示
直线过点(600,400),(700,300)
∴400=600k+b
300=700k+b
k=-1,b=1000
∴y=-x+1000(500≤x≤800)
s=x(1000–x)-500(1000–x)
=1000x–x2–500000+500x
=-x2+1500x–500000(500≤x≤800)
小结:本节课试图让学生体会到函数的本质是对应关系。在实际生活中,影响事物的因素往往是多方面的,而且它们之间存在一定的关系。数学是研究现实世界的空间形式和数量关系的科学。对于实际问题我们抽象概括出它的本质特征,将其数学化、形式化,形成数学模型。这个过程既体现了数学的高度抽象性,又因其高度的抽象性决定了数学的广泛应用性。
作业 :略
探究活动
(1)在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米.
(2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元?
答案:
(1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x+y)+2x]=14×5,即
又x>0,y>0,14×5-(5+2)x≤14×3,
所以x=4时,y取最大值5.另三辆车行驶最远距离:(4+5)×200=1800(千米).
(2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则
所以45≤x≤55,即种蔬菜55亩,杂豆20亩,最大产值为121000元.
(3)某果品公司急需汽车,但无力购买,公司经理想租一辆.一出租公司的出租条件为:每百千米租费110元;一个体出租车司机的条件为:每月付800元工资,另外每百千米付10元油费.问该果品公司租哪家的汽车合算?
解设汽车每月所行里程为x百千米,于是,应付给出租公司的费用为y1=110x,应付给个体司机的费用为y2=800+10x.画出它们的图象,易得图象交点坐标为(8,8800).由图象可知,当x<8时,y1<y2;当x=8时,y1=y2,当x>8时,y1>y2.
综合上述可知,汽车每月行驶里程少于800千米时,租国营出租汽车公司的汽车合算;每月行驶里程大于800千米时,租个体司机的汽车合算.因此,该果品公司应先估计一下每月用车的里程,然后根据估算的结果确定该租哪家的汽车.
一、目的要求
1.使学生能画出正比例函数与一次函数的图象。
2.结合图象,使学生理解正比例函数与一次函数的性质。
3.在学习的基础上,使学生进一步理解正比例函数和一次函数的概念。
二、内容分析
1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。
2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。
三、教学过程
复习提问:
1.什么是一次函数?什么是正比例函数?
2.在同一直角坐标系中描点画出以下三个函数的图象:
y=2x y=2x-1 y=2x+1
新课讲解:
1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。
再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。
一般地,一次函数的图象是一条直线。
前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。
先看两个正比例项数,
y=0.5x
与y=-0.5x
由这两个正比例函数的解析式不难看出,当x=0时,
y=0
即函数图象经过原点.(让学生想一想,为什么?)
除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。
实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:
(1)先选取两点,通常选点(0,0)与点(1,k);
(2)在坐标平面内描出点(0,o)与点(1,k);
(3)过点(0,0)与点(1,k)做一条直线.
这条直线就是正比例函数y=kx(k≠0)的图象.
观察正比例函数 y=0.5x的图象.
这里,k=0.5>0.
从图象上看,y随x的增大而增大.
再观察正比例函数 y=-0.5x 的图象。
这里,k=一0.5<0
从图象上看,y随x的增大而减小
实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.
先看
y=0.5x
任取两对对应值.(x1,y1)与(x2,y2),
如果x1>x2,由k=0.5>0,得
0.5x1>0.5x2
即 yl>y2
这就是说,当x增大时,y也增大。
类似地,可以说明的y=-0.5x 性质。
从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。
一般地,正比例函数y=kx(k≠0)有下列性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小。
2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数
y=kx+b(k,b是常数,k≠0)
通常选取
(o,b)与(-
两点,
对于例l中的一次函效
y=2x+1与y=-2x+1
就分别选取
(o,1)与(一0.5,2),
还有
(0,1)—与(0.5.0).
在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线)y=kx+b
结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。
对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。
课堂练习:
教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。
课堂小结:
1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.
2.一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象.
3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).
四、课外作业
1.教科书习题13.5a组第l一3题.
2.选作教科书习题13.5b组第1题.
以下是“反比例函数的图象和性质”(第一课时)说课稿,希望大家喜欢!
一、教材分析:
主要从地位与
将本文的Word文档下载到电脑保存
推荐等级22.2.3公式法篇1教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标理解一...
22.2.5因式分解法篇1教学内容用因式分解法解一元二次方程.教学目标掌握用因式分解法解一元二次方程.通过复习用配方法、公...
函数的图象篇1一、教学目的1.使学生进一步理解自变量的取值范围和函数值的意义.2.使学生会用描点法画出简单函数的图象.二...
一元二次方程的应用篇1第一课时一、教学目标 1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。2.通过列...
2.3平行线特征篇1§2.3平行线特征教学目标 1.平行线的性质;2.运用这些性质进行简单的推理或计算;3.经历观察﹑操作﹑推理...
4.4一元一次方程的应用篇15.3 用方程解决问题(2)--打折销售 学习目标:1、进一步经历运用方程解决实际问题的过程...
近似数篇1教学设计示例 一、素质教育目标 (一)知识教学点 1.使学生理解和有效数字的意义 2.给一个,能说出它精确到哪一...
12.1一元二次方程篇1教学目的1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成...
相似图形篇1教学交流课教案: 第四章教学目标 :1、知道线段比的概念。2、会求两条线段的比。3、通过有关比例尺的计算,让...
二元一次方程篇1§11.1【教学目标 】【知识目标】了解、组及其解等有关概念,并会判断一组数是不是某个组的解。【能力目标...
平均数教案篇1导学内容:人教版小学数学教材第90~91页的例1、例2及相关内容。导学目标:1.使学生理解平均数的含义,初步...
《中位线》教案篇1教学过程一、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号