更新时间:2025-08-12 11:34:15
课 题:不等式的性质(2)
教学目的:
1理解同向不等式,异向不等式概念;
2理解不等式的性质定理1—3及其证明;
3理解证明不等式的逻辑推理方法.
4通过对不等式性质定理的掌握,培养学生灵活应变的解题能力和思考问题严谨周密的习惯
教学重点:掌握不等式性质定理1、2、3及推论,注意每个定理的条件
教学难点:1理解定理1、定理2的证明,即“a>bb<a和a>b,b>ca>c”的证明这两个定理证明的依据是实数大小的比较与实数运算的符号法则
2定理3的推论,即“a>b,c>da+c>b+d”是同向不等式相加法则的依据但两个同向不等式的两边分别相减时,就不能得出一般结论
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学方法:
引导启发结合法——即在教师引导下,由学生利用已学过的有关知识,顺利完成定理的证明过程及定理的简单应用
教学过程:
一、复习引入:
1.判断两个实数大小的充要条件是:
2.(1)如果甲的年龄大于乙的年龄,那么乙的年龄小于甲的年龄吗?为什么?
(2)如果甲的个子比乙高,乙的个子比丙高,那么甲的个子比丙高吗?为什么?
从而引出不等式的性质及其证明方法.
二、讲解新课:
1.同向不等式:两个不等号方向相同的不等式,例如:a>b,c>d,是同向不等式异向不等式:两个不等号方向相反的不等式例如:a>b,c<d,是异向不等式
2.不等式的性质:
定理1:如果a>b,那么b<a,如果b<a,那么a>b.(对称性)
即:a>bb<a;b<aa>b
证明:∵a>b∴a-b>0
由正数的相反数是负数,得-(a-b)<0
即b-a<0 ∴b<a (定理的后半部分略).
点评:可能个别学生认为定理l没有必要证明,那么问题:若a>b,则和谁大?根据学生的错误来说明证明的必要性“实数a、b的大小”与“a-b与零的关系”是证明不等式性质的基础,本定理也称不等式的对称性.
定理2:如果a>b,且b>c,那么a>c.(传递性)
即a>b,b>ca>c
证明:∵a>b,b>c ∴a-b>0,b-c>0
根据两个正数的和仍是正数,得
(a-b)+(b-c)>0 即a-c>0
∴a>c
根据定理l,定理2还可以表示为:c<b,b<ac<a
点评:这是不等式的传递性、这种传递性可以推广到n个的情形.
定理3:如果a>b,那么a+c>b+c.
即a>ba+c>b+c
证明:∵a>b, ∴a-b>0,
∴(a+c)-(b+c)>0 即a+c>b+c
点评:(1)定理3的逆命题也成立;
(2)利用定理3可以得出:如果a+b>c,那么a>c-b,也就是说,不等式中任何一项改变符号后,可以把它从—边移到另一边.
推论:如果a>b,且c>d,那么a+c>b+d.(相加法则)
即a>b,c>da+c>b+d.
证法一:
a+c>b+d
证法二:
a+c>b+d
将本文的Word文档下载到电脑保存
推荐等级教材:北师大义务教育课程标准教科书七年级一册(P89--93)一、知识与能力目标:1、经历探索规律并用代数式表示规律的过程...
教学目的: 1、使学生初步掌握长方形、正方形的基本特征,会在方格纸上画长方形和正方形。 2、初步认识平行四边形...
一、教学目标 :经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活...
背景介绍本学期,我们二中八年级的数学老师在渤海大学范文贵老师的指导下进行了一些教学上的改革尝试。范老师现正在华东师...
一、相关背景介绍建构主义理论告诉我们,学习是学生在原有认知经验基础上主动建构新知识的过程。这一建构过程实际上需要学...
“生成”是新课程倡导的一个重要教学理念。“生成”对应于“预设”。传统的课堂教学,常常只有预设而不见生成。教师期望...
教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意...
教学目标 (1)熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断.(2)理解一条直线到另一条直线的角的概念...
教学目标 (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练...
教学目标 (1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都...
教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法;(...
教学目标 (1)能熟练运用不等式的基本性质来解不等式;(2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号