更新时间:2025-08-12 11:34:15
一.教学目标
1.会用计算器求数的立方根.
2.通过,培养学生的类比思想,提高运算能力;
3.利,使学生进一步领会数学的转化思想;
4.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习、探索知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个数的立方根的程序
教学难点 :准确的用计算器求一个数的立方根
三.教学方法
启发式
四.教学手段
计算器,实物投影仪
五.教学过程
前面我们学习了用计算器求一个数的平方根,现在我们回忆一下计算器的使用方法.如何利用计算器求一个数的平方根?操作步骤?
练习:求下列各数的平方根:
(1)13;(2)23.45
在初一学习了用计算器求一个数的平方或立方的方法?(由学生回答操作过程,并对比两者的差别与联系)
对于用计算器求一个数的平方根的方法我们已经熟悉了,那么如何用计算器器其一个数的立方根?与求平方根有何区别和练习?
对于求立方根和平方根的操作过程基本相同,主要差别是在开方的次数上,因此要注意其立方根时开方数是3。
例1.用计算器求
分析:求解时要用到上方的键,因此要用到“2F”功能键转换。
解:用计算器求的步骤如下:
=5
小结:从这道题刻一个观察出和平方根十分类似,区别是在倒数第二步的按键将改为改为,只是次数不同。
例2.用计算器求
解:用计算器求的步骤如下:
≈12.26
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
练习:求下列各式的值
(1);(2);(3);(4)
(5)(6)(7)
(8)(9)(10)
例3.求下列各式中x的值(精确到0.01)
(1)
解:
用计算器求的值:
(2)
解:
用计算器求的值:
六.总结
今天学习了用计算器求一个数的立方根,求立方根的方法与平方根的方法类似,但要注意开方次数。做题要细心仔细,严格按照步骤操作。
七.作业
A组1、2、3
八.板书
一.教学目标
1.会用计算器求数的立方根.
2.通过,培养学生的类比思想,提高运算能力;
3.利,使学生进一步领会数学的转化思想;
4.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习、探索知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个数的立方根的程序
教学难点 :准确的用计算器求一个数的立方根
三.教学方法
启发式
四.教学手段
计算器,实物投影仪
五.教学过程
前面我们学习了用计算器求一个数的平方根,现在我们回忆一下计算器的使用方法.如何利用计算器求一个数的平方根?操作步骤?
练习:求下列各数的平方根:
(1)13;(2)23.45
在初一学习了用计算器求一个数的平方或立方的方法?(由学生回答操作过程,并对比两者的差别与联系)
对于用计算器求一个数的平方根的方法我们已经熟悉了,那么如何用计算器器其一个数的立方根?与求平方根有何区别和练习?
对于求立方根和平方根的操作过程基本相同,主要差别是在开方的次数上,因此要注意其立方根时开方数是3。
例1.用计算器求
分析:求解时要用到上方的键,因此要用到“2F”功能键转换。
解:用计算器求的步骤如下:
=5
小结:从这道题刻一个观察出和平方根十分类似,区别是在倒数第二步的按键将改为改为,只是次数不同。
例2.用计算器求
解:用计算器求的步骤如下:
≈12.26
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
练习:求下列各式的值
(1);(2);(3);(4)
(5)(6)(7)
(8)(9)(10)
例3.求下列各式中x的值(精确到0.01)
(1)
解:
用计算器求的值:
(2)
解:
用计算器求的值:
六.总结
今天学习了用计算器求一个数的立方根,求立方根的方法与平方根的方法类似,但要注意开方次数。做题要细心仔细,严格按照步骤操作。
七.作业
A组1、2、3
八.板书
一.教学目标
1.会用计算器求数的立方根.
2.通过,培养学生的类比思想,提高运算能力;
3.利,使学生进一步领会数学的转化思想;
4.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习、探索知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个数的立方根的程序
教学难点 :准确的用计算器求一个数的立方根
三.教学方法
启发式
四.教学手段
计算器,实物投影仪
五.教学过程
前面我们学习了用计算器求一个数的平方根,现在我们回忆一下计算器的使用方法.如何利用计算器求一个数的平方根?操作步骤?
练习:求下列各数的平方根:
(1)13;(2)23.45
在初一学习了用计算器求一个数的平方或立方的方法?(由学生回答操作过程,并对比两者的差别与联系)
对于用计算器求一个数的平方根的方法我们已经熟悉了,那么如何用计算器器其一个数的立方根?与求平方根有何区别和练习?
对于求立方根和平方根的操作过程基本相同,主要差别是在开方的次数上,因此要注意其立方根时开方数是3。
例1.用计算器求
分析:求解时要用到上方的键,因此要用到“2F”功能键转换。
解:用计算器求的步骤如下:
=5
小结:从这道题刻一个观察出和平方根十分类似,区别是在倒数第二步的按键将改为改为,只是次数不同。
例2.用计算器求
解:用计算器求的步骤如下:
≈12.26
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
练习:求下列各式的值
(1);(2);(3);(4)
(5)(6)(7)
(8)(9)(10)
例3.求下列各式中x的值(精确到0.01)
(1)
解:
用计算器求的值:
(2)
解:
用计算器求的值:
六.总结
今天学习了用计算器求一个数的立方根,求立方根的方法与平方根的方法类似,但要注意开方次数。做题要细心仔细,严格按照步骤操作。
七.作业
A组1、2、3
八.板书
一.教学目标
1.会用计算器求数的立方根.
2.通过,培养学生的类比思想,提高运算能力;
3.利,使学生进一步领会数学的转化思想;
4.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习、探索知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个数的立方根的程序
教学难点:准确的用计算器求一个数的立方根
三.教学方法
启发式
四.教学手段
计算器,实物投影仪
五.教学过程
前面我们学习了用计算器求一个数的平方根,现在我们回忆一下计算器的使用方法.如何利用计算器求一个数的平方根?操作步骤?
练习:求下列各数的平方根:
(1)13;(2)23.45
在初一学习了用计算器求一个数的平方或立方的方法?(由学生回答操作过程,并对比两者的差别与联系)
对于用计算器求一个数的平方根的方法我们已经熟悉了,那么如何用计算器器其一个数的立方根?与求平方根有何区别和练习?
对于求立方根和平方根的操作过程基本相同,主要差别是在开方的次数上,因此要注意其立方根时开方数是3。
例1.用计算器求
分析:求解时要用到上方的键,因此要用到“2F”功能键转换。
解:用计算器求的步骤如下:
=5
小结:从这道题刻一个观察出和平方根十分类似,区别是在倒数第二步的按键将改为改为,只是次数不同。
例2.用计算器求
解:用计算器求的步骤如下:
≈12.26
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
练习:求下列各式的值
(1);(2);(3);(4)
(5)(6)(7)
(8)(9)(10)
例3.求下列各式中x的值(精确到0.01)
(1)
解:
用计算器求的值:
(2)
解:
用计算器求的值:
六.总结
今天学习了用计算器求一个数的立方根,求立方根的方法与平方根的方法类似,但要注意开方次数。做题要细心仔细,严格按照步骤操作。
七.作业
A组1、2、3
八.板书
一.教学目标
1.会用计算器求数的立方根.
2.通过,培养学生的类比思想,提高运算能力;
3.利,使学生进一步领会数学的转化思想;
4.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习、探索知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个数的立方根的程序
教学难点:准确的用计算器求一个数的立方根
三.教学方法
启发式
四.教学手段
计算器,实物投影仪
五.教学过程
前面我们学习了用计算器求一个数的平方根,现在我们回忆一下计算器的使用方法.如何利用计算器求一个数的平方根?操作步骤?
练习:求下列各数的平方根:
(1)13;(2)23.45
在初一学习了用计算器求一个数的平方或立方的方法?(由学生回答操作过程,并对比两者的差别与联系)
对于用计算器求一个数的平方根的方法我们已经熟悉了,那么如何用计算器器其一个数的立方根?与求平方根有何区别和练习?
对于求立方根和平方根的操作过程基本相同,主要差别是在开方的次数上,因此要注意其立方根时开方数是3。
例1.用计算器求
分析:求解时要用到上方的键,因此要用到“2F”功能键转换。
解:用计算器求的步骤如下:
=5
小结:从这道题刻一个观察出和平方根十分类似,区别是在倒数第二步的按键将改为改为,只是次数不同。
例2.用计算器求
解:用计算器求的步骤如下:
≈12.26
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
练习:求下列各式的值
(1);(2);(3);(4)
(5)(6)(7)
(8)(9)(10)
例3.求下列各式中x的值(精确到0.01)
(1)
解:
用计算器求的值:
(2)
解:
用计算器求的值:
六.总结
今天学习了用计算器求一个数的立方根,求立方根的方法与平方根的方法类似,但要注意开方次数。做题要细心仔细,严格按照步骤操作。
七.作业
A组1、2、3
八.板书
一.教学目标
1.会用计算器求数的立方根.
2.通过用计算器求立方根,培养学生的类比思想,提高运算能力;
3.利用计算器求立方根,使学生进一步领会数学的转化思想;
4.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习、探索知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个数的立方根的程序
教学难点 :准确的用计算器求一个数的立方根
三.教学方法
启发式
四.教学手段
计算器,实物投影仪
五.教学过程
前面我们学习了用计算器求一个数的平方根,现在我们回忆一下计算器的使用方法.如何利用计算器求一个数的平方根?操作步骤?
练习:求下列各数的平方根:
(1)13;(2)23.45
在初一学习了用计算器求一个数的平方或立方的方法?(由学生回答操作过程,并对比两者的差别与联系)
对于用计算器求一个数的平方根的方法我们已经熟悉了,那么如何用计算器器其一个数的立方根?与求平方根有何区别和练习?
对于求立方根和平方根的操作过程基本相同,主要差别是在开方的次数上,因此要注意其立方根时开方数是3。
例1.用计算器求
分析:求解时要用到上方的键,因此要用到“2F”功能键转换。
解:用计算器求的步骤如下:
=5
小结:从这道题刻一个观察出用计算器求立方根和平方根十分类似,区别是在倒数第二步的按键将改为改为,只是次数不同。
例2.用计算器求
解:用计算器求的步骤如下:
≈12.26
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
练习:求下列各式的值
(1);(2);(3);(4)
(5)(6)(7)
(8)(9)(10)
例3.求下列各式中x的值(精确到0.01)
(1)
解:
用计算器求的值:
(2)
解:
用计算器求的值:
六.总结
今天学习了用计算器求一个数的立方根,求立方根的方法与平方根的方法类似,但要注意开方次数。做题要细心仔细,严格按照步骤操作。
七.作业
A组1、2、3
八.板书
将本文的Word文档下载到电脑保存
推荐等级《认识物体》教学设计篇1一、分类、揭示物体名称。师:上课,同学们好。师:小朋友们你们喜欢看动画片吗?今天哪,老师给...
《菱形》教案篇1教学建议知识结构重难点分析本节的重点是菱形的性质和判定定理。菱形是在平行四边形的前提下定义的,首先她...
《复式条形统计图》教案篇1教学目标:知识与技能:理解并掌握复式条形统计图的另一种绘制方法,培养学生的动手实践能力.学会...
《复式条形统计图》教学设计篇1教学内容:北师大版数学六年级上册,第五单元第一课《复式条形统计图》。教学目标:知识与...
《对称图形》教案篇1教学目标:1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形...
《丑小鸭》教案篇1【课前透视】《丑小鸭》是根据安徒生作品改写的一篇拟人体童话。文章以充满情趣的语言,生动引人的情节...
《连减》教学设计篇1教学内容:小学二年级数学上册26—27页例1、例2教学目标:1、使学生掌握用竖式计算连加、连减的方法和...
《对称图形》教学设计篇1对称图形教学设计教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中...
《丑小鸭》教学设计篇1【分析教材】《丑小鸭》这篇课文是根据著名童话作家安徒生的《丑小鸭》改编的,故事中的丑小鸭是一...
《旋转》教案篇1教学内容:苏教版第六册第24—26页。教学目标:1、通过观察生活图片,初步感知平移和旋转现象,并能在方格...
《确定起跑线》教案篇1设计理念:1、尽可能向学生提供现实的素材,让学生感受和学习“现实中的数学”。2、创设开放的问题情...
《旋转》教学设计篇1一、复习旧知。1、出示指针旋转的过程,唤起学生对旋转的记忆。师:(出示课件:钟面模型)分针从12转...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号