多学习 > 教案下载 > 数学教案 > 高中数学教案 > 高二数学教案 > 点到直线的距离教案(精选2篇)

点到直线的距离教案(精选2篇)

更新时间:2025-08-12 11:34:15

点到直线的距离教案篇1

一.教学目标

1.教材分析

⑴教学内容

《点到直线的距离》是全日制普通高级中学教科书(必修·人民教育出版社)第二册(上),“§7.3两条直线的位置关系”的第四节课,主要内容是点到直线的距离公式的推导过程和公式应用.

⑵地位与作用

本节对“点到直线的距离”的认识,是从初中平面几何的定性作图,过渡到了解析几何的定量计算,其学习平台是学生已掌握了直线倾斜角、斜率、直线方程和两条直线的位置关系等相关知识.对“点到直线的距离”的研究,为以后直线与圆的位置关系和圆锥曲线的进一步学习奠定了基础,具有承前启后的重要作用.

2.学情分析

高二年级学生已掌握了三角函数、平面向量等有关知识,具备了一定的利用代数方法研究几何问题的能力.根据我校学生基础知识较扎实、思维较活跃,但处理抽象问题的能力还有待进一步提高的学习现状和认知特点,本课采用类比发现式教学法.

3.教学目标

依据上面的教材分析和学情分析,制定如下教学目标.

⑴知识技能

①理解点到直线的距离公式的推导过程;

②掌握点到直线的距离公式;

③掌握点到直线的距离公式的应用.

⑵数学思考

①通过点到直线的距离公式的探索和推导过程,渗透算法的思想;

②通过自学教材上利用直角三角形的面积公式的证明过程,培养学生的数学阅读能力;

③通过灵活应用公式的过程,提高学生类比化归、数形结合的能力.

⑶解决问题

①通过问题获得数学知识,经历“发现问题—提出问题—解决问题”的过程;

②由探索点到直线的距离,推广到探索点到直线的距离的过程,使学生体会从特殊到一般、由具体到抽象的数学研究方法.

⑷情感态度

结合现实模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学生的学习兴趣.

点到直线的距离教案篇2

教学目标:

1.让学生理解点到直线距离公式的推导和掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离.

2.培养学生观察、思考、分析、归纳等数学能力,数形结合、化归(或转化)、特殊到一般的数学思想方法以及数学应用意识.

3.让学生了解和感受探索问题的方法,以及用联系的观点看问题.在探索问题的过程中体验成功的喜悦.

教学重点:点到直线距离公式及其应用.

教学难点:点到直线距离公式的推导.

教学方法:启发式讲解法、讨论法.

教学工具:电脑多媒体.

教学过程:

一、提出问题

多媒体显示实际的例子:

某电信局计划年底解决本地区最后一个小区的电话通信问题.经过测量,若按照部门内部设计好的坐标图(即以电信局为原点),得知这个小区的坐标为p(-1,5),离它最近的只有一条线路通过,其方程为2xy10=0.要完成这项任务,至少需要多长的电缆线?

这个实际问题要解决,要转化成什么样的

数学问题?学生得出就是求点到直线的距离.教师提出这堂课我们就来学习点到直线的距离,并板书写课题:点到直线的距离.

二、解决问题

多媒体显示:已知点p(x0,y0),直线:axbyc=0,求点p到直线的距离.

怎样求点到直线距离呢?学生应该很快能回答出,做垂线找垂足q,求线段pq的长度.怎样用点的坐标和直线方程求和表示点到直线距离呢?

教师提示在解决问题时先可以考虑特殊情况,再考虑一般情况.学生提出平行于x轴和y轴的特殊情况.显示图形:

板书:

如何求?

学生思考回答下列想法:

思路一:过作于点,根据点斜式写出直线方程,由与联立方程组解得点坐标,然后利用两点距离公式求得.

教师评价:此方法思路自然,但是运算繁琐.并多媒体展示求解过程.

解:直线:,即

由,

说明:本过程只展示,不在课堂推导.

教师提问:能否用其它方法,不求点q的坐标,求线段pq的长度?

学生思考:放在三角形---特殊三角形---直角三角形中.

教师提问:如何构造三角形?第三个顶点选在什么位置?

学生思考:可能在直线与x轴的交点m或与y轴交点n,或过p点做x,y轴的平行线与直线的交点r、s.

教师根据学生提出的点的位置作分析,求解过程的繁与简,最后决定方法.下列是学生可能提到的情况:

思路二:在直角△pqm,或直角△pqn中,求边长与角(角与直线到直线角有关),用余弦值.

思路三:在直角△pqr,或直角△pqs中,求边长与角(角与直线倾斜角有关,但分情况),用余弦值.

思路四:在直角△prs中,求线段pr、ps、rs,利用等面积法(不涉及角和分情况),求得线段pq长.

学生练习求解思路四.教师巡视,根据学生情况演示过程.

解:设,,,

,;,

由,

说明:如果学生没有想到思路二、三,教师提示做课后思考作业题目.

教师提问:①上式是由条件下得出,对成立吗?

②点p在直线上成立吗?

③公式结构特点是什么?用公式时直线方程是什么形式?

由此推导出点p(x0,y0)到直线:axbyc=0距离公式:

教师继续引导学生思考,不构造三角形可以求吗?(在前面学习的向量知识中,有向量的模.由于在证明两直线垂直时已经用到向量知识,且也提出过直线的法向量的概念.)能否用向量知识求解呢?

思路五:已知直线的法向量,则,,如何选取法向量?直线的方向向量,则法向量为,或,或其它.由师生一起分析得出取=.

教师板演:

,

,由于点q在直线上,所以满足直线方程,解得

教师评析:向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点.而且上述方法在今后解析几何与向量结合的题目中,用坐标联系转化是常用方法.

三、公式应用

练习:

1.解决课堂提出的实际问题.(学生口答)

2.求点p0(-1,2)到下列直线的距离:

①3x=2②5y=3③2xy=10④y=-4x1

练习选择:平行坐标轴的特殊直线,直线方程的非一般形式.

练习目的:熟悉公式结构,记忆并简单应用公式.

教师强调:直线方程的一般形式.

例题:

3.求平行线2x-7y8=0和2x-7y-6=0的距离.

教师提问:如何求两平行线间的距离?距离如何转化?

学生回答:选其中一条直线上的点到另一条直线的距离.

师生共同分析:点所在直线的任意性、点的任意性.

学生自己练习,教师巡视.教师提问几个学生回答自己选取的点和直线以及结果.然后选择一种取任意点的方法进行板书.

解:在直线2x-7y-6=0上任取点p(x0,y0),则2x0-7y0-6=0,点p(x0,y0)到直线2x-7y8=0的距离是.

教师评述:本例题选取课本例题,但解法较多.除了选择直线上的点,还可以选取原点,求它到两条直线的距离,然后作和.或者选取直线外的点p,求它到两条直线的距离,然后作差.

引申思考:与两平行线间距离公式.

四、课堂小结:(由学生总结)

①&n

②数学思想方法:类比、转化、数形结合思想,特殊到一般的方法.

③多角度考虑问题,一题多解.

五、布置作业

①课本习题7.3的第13题----16题;

②总结写出点到直线距离公式的多种方法.

教学设计说明:

一、教材分析

我主要从三方面:教材的地位和作用、教学目标分析、教学重点和难点来说明的。教学目标包括:知识、能力、德育等方面的内容。我确定教学目标的依据有教学大纲、考试大纲的要求、新教材的特点、所教学生的实际情况。

二、教学方法和手段

1、教学方法的选择

(1)指导思想:教师为主导,学生为主体,引导学生参与对事物的认识过程。

(2)教学方法:启发式讲解法、讨论法。

2.教学手段的选用

采用了电脑多媒体教具,不仅将数学问题形象、直观显示,便于学生思考,而且迅速展示部分纯计算的解题过程,提高课堂效率。

三、教学过程

这节课我分:"提出问题--解决问题--公式应用--课堂小结--布置作业"五个环节来完成。

首先多媒体显示实例,引发学生的学习的兴趣和求知欲望,从而引出数学问题。通过一系列问题引导学生通过图形观察,进而分析、归纳总结选择较好的方法具体实施。关于思路五,在课本中没有出现这样的证法,我在课堂上选取这样的证法。主要是考虑到:向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点。而且上述方法在今后解析几何与向量结合的题目中,用坐标联系转化是常用方法,这样思路五的给出不仅符合新教材的要求,也为今后的学习方法奠定了基础。

我选择练习目的:熟悉公式结构,记忆并简单应用公式,主要通过学生口答完成。我强调注意在公式中直线方程的一般式。例题的选取来自课本,但是课本只有一种特殊点的解法。我把本例题进行挖掘,引导学生多角度考虑问题。在整个过程中让学生注意体会解题方法中的灵活性。本节课小结主要由学生总结,教师补充,尤其数学思想方法教师加以解释。在整节课的处理中,采取了知识、方法来源于课本,挖掘其深度、广度,符合现代教学要求

点到直线的距离教案(精选2篇).docx

将本文的Word文档下载到电脑保存

推荐等级

相关阅读

相关内容

  • 字母能表示什么

    教材:北师大义务教育课程标准教科书七年级一册(P89--93)一、知识与能力目标:1、经历探索规律并用代数式表示规律的过程...

  • 长方形、正方形和平行四边形教学设计与评析长方形、正方形和平行四边形教学设计与评析

    教学目的: 1、使学生初步掌握长方形、正方形的基本特征,会在方格纸上画长方形和正方形。 2、初步认识平行四边形...

  • 《完全平方公式》北师大版七年级数学

    一、教学目标 :经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活...

  • 《一元一次不等式组 ( 三 ) 》教学案例点评

    背景介绍本学期,我们二中八年级的数学老师在渤海大学范文贵老师的指导下进行了一些教学上的改革尝试。范老师现正在华东师...

  • 《函数性质的运用》案例分析

    一、相关背景介绍建构主义理论告诉我们,学习是学生在原有认知经验基础上主动建构新知识的过程。这一建构过程实际上需要学...

  • “预设”与“生成”不是“你死我活”

    “生成”是新课程倡导的一个重要教学理念。“生成”对应于“预设”。传统的课堂教学,常常只有预设而不见生成。教师期望...

  • 简单的线性规划(一)

    教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意...

  • 两条直线的位置关系

    教学目标 (1)熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断.(2)理解一条直线到另一条直线的角的概念...

  • 直线的方程

    教学目标 (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练...

  • 直线的倾斜角和斜率

    教学目标 (1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都...

  • 含有绝对值的不等式

    教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法;(...

  • 不等式的解法举例

    教学目标 (1)能熟练运用不等式的基本性质来解不等式;(2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的...

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号