多学习 > 教案下载 > 数学教案 > 小学数学教案 > 小学四年级数学教案 > 《加法交换律和结合律》(精选15篇)

《加法交换律和结合律》(精选15篇)

更新时间:2025-08-12 11:34:23

《加法交换律和结合律》篇1

教学设计

教学内容:苏教版国标本四年级(上)教材p56-58页内容

教学目标:

1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交     换律和结合律。

2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解 决进行比较和分析,发现并概括出运算律。

3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:

使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:

使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。

课程资源的开发与利用:多媒体课件

教学过程:

一、 创设情境,初步感知

1、课前谈话(讲“朝三暮四”的故事)

听了这个故事,你想说些什么呢?(交换、不变)

2、情境引入

(1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)

(2)媒体出示情境图,从图中你知道了哪些数学信息?(生自由说)

(3)师:你能提出用加法计算的问题吗?

①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人

④参加活动的一共有多少人?

(2)我们先来解决第一个问题:参加跳绳的一共有多少人?

你们能马上口头列式并口算出结果吗?

指名回答,教师板书:28+17=45(人),追问:还有不同的算式吗?在学生回答后,教师完成板书:17+28=45(人)

观察比较这两个不同算式的计算结果。提问:你们发现了什么?

引导学生说出:28+17和17+28的结果都是45。

教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+1717+28)

(如果有学生说出这是加法交换律,就问你能说说什么是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就做出一般的结论,应该多举几个例子,多观察几组不同数目的算式,才能从中发现规律。)请学生根据这个等式完成第二个问题。下面请同学们汇报前置性作业第二题。

2、在列举中验证规律

象这样的等式你会写吗?试试看,越多越好。开始:汇报前置性作业第三题。

谁愿意来交流。

提问:你写了几个?说说看。

根据学生回答,教师相机板书算式,

有没有比她多的。

提问:指着板书,你们写的时候有没有什么规律?

学生能说到加数不变,交换位置,结果是一样的就行。

按照这样的规律,如果老师给你时间你还能写吗?

能写几个?无数个,写不完,用省略号表示(板书……)

3、在反思中概括规律

有这样规律的算式很多,写不完,谁能用一句话概括出这个规律。(四人一组讨论,然后交流。)用课件出示加法交换律的文字表术法。用语言表示加法交换律很长,又比较难记。你能用自己喜欢的方法把这个规律简明的表示出来吗?

需要合作的同学,可以四人小组合作。教师巡视搜集信息。

估计情况: 甲数+乙数=乙数+甲数,……

请同学起来交流:

如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎样表示这个规律呢?板书:a+b=b+a。

小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。

指出:我们过去学过用交换加数的位置再加一遍的方法来验算加法,就是用了加法交换律。

5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了?(加法交换律)

三、学习加法结合律。

1.在情境中感受规律

刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究“参加活动的一共有多少人?”看看我们有没有新的发现?

你们会列综合算式解决这个问题吗?再自备本上做,计算出结果。

交流:估计又学生列式28+17+23=68(人),你先算的是什么?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)

有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是什么?(女生人数)

如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。

观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23)

提问:它符合加法交换律吗?(不符合,加数的位置没变)

提问:加数的位置没变,那究竟加数的什么发生了变化呢?(相加的顺序不同)

引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。

2、在计算中验证规律。

再来看这样两组算式:算一算,下面的ο里能填上等号吗?汇报前置性作业第四题。

(45+25)+13ο45+(25+13)

(36+18)+22ο36+(18+22)

如果有学生直接回答结果是一样的,教师添上=请学生分组验算。

学生回答,教师板书:(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

那现在老师来写个算式(28+46)+27=你能按照上面三个等式的规律写出等号后面的吗?    

你还能写出类似的等式吗?汇报前置性作业第五题。

指名几个学生回答,追问:你是怎么想的?

回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的。

有这样规律的算式多吗?板书……

3、揭示加法结合律

观察黑板上的几个等式,你能发现等号两边的算式什么没变?什么变了吗?

小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)

提问:你们组发现了什么规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?这里的a,表示?b表示?c表示?

板书:(a+b)+c=a+(b+c)

跟老师一起读一遍。

指出:我们过去学过的加法的某些口算方法就是应用了加法结合律。例如:

9+7想:

=9+(1+6)

=(9+1)+6

=10+6

=16

三:巩固内化,拓展应用。

1、课件出示想想做做第1题。

师:下面的加法等式各应用了什么运算律?先说给同桌听听。

师:第一题运用了加法的交换律,第二、三题应用了加法的结合律,我们再来看最后一道等式,先运用了加法的交换律,交换加数48和25的位置,再应用了加法的结合律。所以在一道加法算式中,有时我们也可以同时应用两种运算律。

2、课件出示想想做做第2题:

师:请同学们在课本上独立完成以上填空题。再说说你是怎样想的,为什么能这么填写。

师:第三、四两道算式,我们都可以有两种填法,一种是只用加法的结合律,一种是同时使用加法的交换律和结合律。

3、课件出示想想做做第4题。

师:下面我们进行一场比赛,老师这有4道题,每组做一道,比一比,哪一组做得最快。

(1)38+76+24                    (3)(88+45)+12

(2)38+(76+24)                  (4)45+(88+12)

师:对于这样的比赛结果,你有什么话想说?

比较每组中的两道题有什么联系?哪道题计算更简便些?

师:通过计算,我们发现,每组两道算式中的第二道算式相对来说比较快,因为我们在计算时第一步都可以凑整,计算的结果是100。从中我们可以发现应用了加法的运算律可以使计算简便。

4、完成想想做做第5题

师:哪两片树叶上的和是100?连一连。想一想,怎样的两个数相加和是100。

师:我们在找的时候,是先看个位上的数是几,然后再看哪一个数的个位上的数和它可以凑十,因为凑十是凑整的基础。例如75的个位上是5和25的个位上5可以凑十,然后再看两个数的十位上的数相加是否得九。7+2得9,再加上个位进上来的1,两个数相加的和就是100。在今后的计算中,同学们要做个有心人,在计算之前先观察一下,看看能否运用我们所学过的运算律,把能凑成整十、整百或整千的数先计算,这样可以使计算变得简便,有助于提高计算的速度和正确率。)

5、游戏:谈话:我们班有60位学生,那么老师就是班级中61号,老师想和班级中的9、19、29、39、49、59号交朋友。猜一猜老师为什么要和他们交朋友?(凑整,简便)

6、你想和班级中哪几号同学交朋友?

四、课堂总结

师:今天这节课,通过同学们的共同努力,我们一起认识了加法交换律和结合律,那么减法、乘法、除法有没有运算定律呢?今后我们再研究。不管学习什么内容,只要我们每一位同学都要相信自己能行,只要自己努力去学,就一定会学有所成。

板书设计:

加法的运算定律 

加法交换律                                 加法结合律

28+17=45(人)17+28=45(人)   (28+17)+23  28+(17+23)

28+17=17+28                 =45+23       =28+40

17+23=23+17                 =68(人)    =68(人)

学生汇报的算式                  (28+17)+23=28+(17+23

(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

a+b=b+a                                (a+b)+c=a+(b+c)

《加法交换律和结合律》篇2

教学内容:

苏教版小学数学四年级上册p56-57例题及想想做做1~5题。

教学目标:

1、经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,感知加法运算律的价值,发展应用意识。

2、在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:多媒体课件。

教学过程:

一、探索加法交换律

1、大家请看大屏幕,这些同学在进行体育锻炼,现在老师有个问题:跳绳的有多少人?应该怎么列式呢?指名回答,教师板书:28+17=45(人),追问:还可以怎么列?在学生回答后,教师完成板书:17+28=45(人)

2、问:观察这两个算式,你有什么发现?这两道算式的得数怎么样?可以用什么符号连接?板书:28+17=17+28

仔细地观察一下这个等式,在等号的两边,有什么相同?有什么不同?

3、你们能够象这样再说出几个类似的等式吗?根据学生回答,教师相机板书算式,并追问:说的对吗?我们来验证一下。(学生算等号左右两边的得数分别是多少)

问:这样的算式能写几个?(板书:省略号)

4、我们再仔细的观察这几个等式,你能不能用一句话说一说从中有什么发现?(小组交流)

同桌之间互相说一说,再指名汇报,学生发现规律:两个数相加,交换加数的位置,它们的和不变。

大家能不能用自己喜欢的符号、图形、字母等把发现的规律表示出来呢?在本子上试着写一写。指名回答。

5、大家都用自己的喜欢的方式表示了你们的发现,我们一般都用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这个规律该怎样表示呢?板书:a+b=b+a。(学生读一遍)

6、教师指着板书指出:这个规律就是加法交换律(板书:加法交换律),也就是说:两个数相加,交换加数的位置,和不变,

7、其实加法交换律我们早就会用了,想想看,什么时候我们用过?

指出:在验算加法时用的就是加法交换律。

8、练习:想想做做第3题。

二、探索加法结合律

1、解答例题,观察比较

(1)你会解决这个问题吗?(多媒体出示问题:参加活动的一共有多少人?)

你打算先求什么?再求什么?指名回答。

①先算出跳绳的有多少人。

问:谁会列出综合算式?指名回答并板书:(28+17)+23

②先算出女生有多少人。板书:28+(17+23)

请大家把这两题的答案算出来。

这两道算式结果相同,我们可把它写成怎样的等式?

指名回答并板书:(28+17)+23=28+(17+23)

(2)枚举归纳。

课件出示:算一算,下面的里能填上等号吗?

分4组每组计算一道。交流得数。

通过计算下面的里能填上等号吗?

板书:(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

问:象这样的等式还有很多很多。(板书:省略号)

2、探索规律

(1)观察比较这些等式,并在小组之间讨论一下这些问题:

媒体出示:①仔细观察这三组等式的左边和右边,你能找到哪些什么相同点?有什么不同点?③从中你发现三个数相加,有什么规律呢?

(2)问:如果用a、b、c表示三个加数,你能把上面的规律表示出来吗?

板书:(a+b)+c=a+(b+c)读一遍。

这个规律就是“加法结合律”。(板书:加法结合律)

师指着板书小结:三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,它们的和不变。

刚才我们学习的加法交换律和加法结合律都是加法的运算律。加法的这些运算律在学习中经常能运用到。

三、巩固内化,拓展应用。

1、完成p58页“想想做做”第1题。

(1)出示题目。(课件)

(2)让学生说说每一个等式各应用了什么运算律。指名解答。

2、书本翻到58页,第二题,你能在里填上合适的数吗?直接在书上填一填。

3、多媒体出示4道题,男生做第一组,女生做第二组。

38+76+24(88+45)+12

38+(76+24)45+(88+12)

4、第5题:连一连,哪两片树叶上的和是100?(课件演示)

四、全课总结,拓展延伸。

今天这节课我们学习了什么知识?能说说它们的具体内容吗?

《加法交换律和结合律》篇3

一、说教材

“加法交换律和结合律”是国标版苏教版小学四年级上册第7单元中的内容。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。然后安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。

二、说教学目标

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

三、说教学重点、难点

教学重点:使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。

教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

四、说教学过程

(一)故事导入,激发兴趣:

(播放《朝三暮四》视频)师:同学们,听了这个故事你想说什么?猴子很笨,同学们很聪明,栗子的总颗数有没有变化呢?什么发生变化?

引入:这个故事的名字叫《朝三暮四》,在数学中也有类似《朝三暮四》故事里的规律,同学们想不想研究一下?

设计意图:故事导入激发学生学习的兴趣,初步体验加法交换律,唤起求知欲。

(二)创设情境,联系生活

谈话:天气渐渐转凉,学校要组织大家参加冬季比赛了,看,四年级同学正在操场上开展体育活动。

(课件出示例题情境图)

提问:从图中你了解到哪些数学信息?(指名说一说)

提问:你能提出用加法计算的问题吗?

学生提到的问题可能有:跳绳的有多少人?女生有多少人?参加活动的一共有多少人?

设计意图:创设贴近学生的生活情境,让学生提问可以培养学生的发散性思维。同时学生提出的问题,作为后继探究的学习材料,符合新课程“创造性使用教材”的理念。

谈话:同学们提出的问题都非常好,下面我们先来解决第一个问题。

(三)探索加法交换律,初步感知

课件出示问题(1)要求参加跳绳的有多少人?

提问:应该怎样列式?

指名口答,教师板书:28+17=45(人)

提问:还可怎么列式?板书:17+28=45(人)

提问:这两道算式都是求什么的人数?(跳绳的人数)结果都是多少?

谈话:既然得数相同,我们就可以把这两个算式用“=”连接起来。改写成28+17=17+28

板书:28+17=17+28(学生齐读这个等式)

提问:比较这两个算式,你有什么发现?(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

提问:你能照样子再写出几个像这样的等式吗?试试看。(学生动笔写,指名学生回答,教师把学生说的等式有序地板书在黑板上,板书三个)。

提问:像这样的等式你能写得完吗?

谈话:既然写不完,可以用省略号表示(板书省略号)

提问:请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

提问:你能用自己喜欢的方法表示出像这样的等式吗?可以用符号、字母、文字等等表示,试试看。

师:在数学上,我们通常是用字母a、b来表示两个加数,说来说说怎么表示?

生:a+b=b+a

提问:a和b分别代表什么?

小结:两个数相加,交换这两个加数的位置,和不变。这是加法运算律中的一条很重要的规律加法交换律。

设计意图:本环节能紧密围绕并运用问题情境,师生之间积极互动,教师引导学生自己去感知规律,发现规律,并学会用字母表示。整个过程,学生在观察中感知,在模仿中理解,在探索中发现,培养了学生的抽象括能力。

师:下面老师想考考大家。

考考你

(1)您能在里填上合适的数字吗?

96+35=35+204+57=+204

指名回答,为什么?

(2)下面的等式符合加法交换律吗?为什么?

75+25=25+75

46+59=46+59

90+10=5+95

(没有交换加数的位置;等号两边的加数不同。)

(3)同学们学的真不错,接下来我们来玩个游戏,看看同

学们的反应快不快。游戏:对口令

师:83+17=生:17+83=

97+44=35+65=

88+75=300+600=

a+b=785+68=

设计意图:加深学生对加法交换律的理解,知道加法交换律只是交换加数的位置,其余的'不变。

(4)提问:同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?

下面一道题357+218,请同学们计算并用加法交换律进行验算。

(四)探索加法结合律,自主合作

谈话:同学们,刚才我们通过解决“跳绳的有多少人”这个问题,得到了加法交换律,现在我们再来研究同学提到的问题,看看有什么发现。

出示问题(2):参加活动的一共有多少人?

提问:你会列综合算式解决这个问题吗?

指名回答,教师板书:28+17+23

提问:如果老师想突出强调先算跳绳的人数,可以怎么做?

生:添上小括号

教师给28+17加上小括号。

提问:还是这个式子28+17+23,如果要先算参加活动的女生人数,应该怎么办?

学生同桌交流,指名说说。

教师添上括号:28+(17+23)。

提问:比较这两道算式:它们有什么相同点和不同点?(数学符号相同,得数相同,但运算顺序不同)

师:既然得数相同,我们可以写成等式:

板书:(28+17)+23=28+(17+23)

课件出示:算一算,下面的○里能填上等号吗?

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

指名学生口答。

归纳加法结合律:

提问:观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律?和你的同桌交流一下。

提问:你能用字母a、b、c代表这三个加数,把上面的规律表示出来吗?(学生独立写一写)教师板书:(a+b)+c=a+(b+c)

小结:三个数相加,先把前两个数相加,再与第三个数相加;或者先把后两个数相加,再与第一个数相加,它们的和不变。这就是我们今天所学的加法的第二个运算律——加法结合律。(板书:加法结合律)

考考你:运用加法结合律在括号里填上合适的数字

(45+36)+64=45+(□+□)

560+(140+70)=(560+□)+□

总结:这节课我们一起学习了加法的交换律和结合律,知道两个数相加,交换加数的位置和不变,还知道了三个数连加,改变运算顺序和不变。

设计意图:围绕“变与不变”这一关键点,通过比较每组的两个算式,初步感受规律。接着再经过学生个性化的验证及交流,从而确认加法结合律并学会用含有字母的式子来表示。这样发展了学生分析、比较、归纳、概括的能力。

(五)巩固应用,扩展提高

同学们刚才的表现真棒!那现在想不想和老师一起去闯关呀。我们的闯关开始啦!

1、第一关:火眼金睛

下面的等式各运用了加法的什么运算律?

82+0=0+82

47+(30+8)=(47+30)+8

(84+68)+32=84+(68+32)

75+(48+25)=(75+28)+48

2、第二关:大显身手

在途中,小熊遇到了麻烦,它想把树上的苹果摘下来,可是它必须答对问题,才能拿到苹果,你能帮助它吗?

相加等于100?

3、第三关:勇夺第一,想想做做4

38+76+2438+(76+24)

全班男生完成第1题,女生完成第2题。

提问:为什么每组两道题的得数相同?哪种方法简便,为什么?

观察(88+45)+1245+(88+12),哪题运算简便。

小结:可见,合理地运用加法的交换律和结合律可以使计算简便。

设计意图:几个层次的练习,为学生提供了具有价值的学习内容,开放学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。

(六)全课总结

今天这节课我们学习了什么知识?应用加法交换律和结合律,有时可以使计算简便。下一节课我们将继续学习。

设计意图:及时总结、巩固所学知识。使学生在自己的整理总结中再次巩固了本节课的重难点。同时为学生以后的学习作好了铺垫。

《加法交换律和结合律》篇4

加法的交换律和结合律一课属于数的运算中的一个重要内容。是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。

新教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。

片断一:

师:谈话:天气渐渐凉了,我们学校又要组织大家进行冬锻炼比赛了,冬锻炼比赛有些什么项目呢?看,同学们正在紧张的训练呢。

(出示情境图),从图中你获得了哪些信息?你能提出哪些用加法计算的问题?

根据学生的回答,板书:1、参加跳绳活动的有多少人?

2、参加活动的女生有多少人?

3、参加活动的一共有多少人?

……

【反思】

从课堂的引入老师就以最贴近生活的冬季锻炼比赛为题,一下子激起了学生学习的“兴奋点”,学生提出了很多加法问题,从而很自然的进入了后面的学习。

片断二:

下面我们先来解决第一个问题,求跳绳的有多少人,怎样列式计算?

指名口答,教师板书:28+17=45(人)

追问:还可以怎样列式?在学生回答后,教师完成板书:17+28=45(人)

这两个算式都是求的什么?它们的结果怎么样?那你能用一个符号把他们连接起来吗?(等号)板书:28+17=17+28,这是一个等式,我们一起来读一读。

仔细的观察一下这个等式,在等号的两边,什么地方相同,什么地方不同?

【反思】

在这样一个教师引导,学生进行比较、分析、举例、验证,表达的过程中,充分发挥了学生主体的作用,也让学生感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了学生自主探索,推导,验证的一个完整过程。

新教材的目标设定及教学过程,更多的体现了动态生成,寓数学思考,探究,发现于一体的数学活动过程,教师只有把握住了这个精髓才能去上好课,发展学生的综合能力。

《加法交换律和结合律》篇5

作者:扬州市梅岭小学凌丽高邮市教育局教研室汪泰

教学内容:

苏教版四年级上册p56-57例题。

教学过程:

一、创设情境,导入新课(屏示主题图)。

图中的小朋友在干什么?从图中你了解到了什么?能提出数学问题吗?我们选择一个:跳绳的有多少人?(屏示问题。)

二、探索加法交换律:

1.在情境中初步感知加法交换律。

学生列式:28+17=45(人)或17+28=45(人)。

同样的一幅图,同样的一个问题,我们列出了两道不同的算式,其中“28+17"是用男生人数加上女生人数,“17+28”呢?(女生人数加上男生人数)

两道算式都表示把男生人数和女生人数合起来,所以都等于?(45人)

两道算式得数相同,我们可以用“=”把它们连成一个等式。(屏示等式:28+17=17+28)

【评析:使用新教材后,许多教师对数量关系的运用弱化了,不少老师在这里就算式论算式,就运算论运算,出了力,却效果差,此处让学生根据已知条件,紧扣数量关系来列式,为理解加法意义服务。由于学生思考的角度不同,所依据的数量关系和列出的算式也就不同,因此运算的顺序也就不同,为教学下面的内容作了很好的铺垫。】

2.观察等式,发现个案特点:

仔细看,等号左右两边有什么相同?

——都是在加法中,两个加数相同,得数都等于45。(板书:加法)

不同呢?——两个加数的位置不同。

位置怎样了?(屏示动态交换过程)(板书:交换)

3.举例验证,并简要表示规律。

像这样的等式你能再写几个吗?(汇报时,教师在屏幕上输出学生举出的等式:)

追间:类似这样的等式能写完吗?(屏示省略号。)

虽然咱们写出的等式各不相同,但是仔细观察,它们却蕴藏着共同的规律,你发现了吗?交流一下。

师小结:两个数相加,交换加数的位置,和不变。

刚才,我们用语言把加法中的这个规律表达了出来,其实,我们还可以用一些更为简洁的方式来表达,比如用汉字、图形、字母等写成等式,也能表示这样的规律,你能用自己喜欢的方式来表达吗?(在实物投影上展示交流。)

【评析:多媒体课件有效而不花哨,通过图片、数据的移动,对学生感知加法交换律起了很好的意会作用;同时根据学生的回答,在屏幕上随机生成算式,激发了学生的学习热情,让学生感受到类似算式所具有的普遍性,为抽象出加法交换律奠定基础。】

4.用字母表示交换律:

刚才大家想出的等式都很好,不仅能把我们发现的规律表示出来,而且比语言叙述更简洁。其实这个规律,是加法的一个很重要的运算律。(板书:运算律)能给它取个名字吗?——加法交换律。

在数学上,我们通常用字母a和b来表示两个加数,那么,加法交换律可以写成:a+b=b+a。

加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?

——加法验算,交换两个加数的位置再加一遍就是运用了加法交换律。

【评析:第一次观察交流,是让学生初次感受算式的特点,并能仿写出来;第二次看和说,有助于学生用语言和符号来归纳出算式的特点。看和说都是学生自己在活动,学生相互间的说,打破了课堂中一对一的交流形式,增加了表述的时空。学生用符号和文字表示算式后,再次让学生说出符号和文字所表示的意义,让学生经历由数上升到用符号、字母表示的一种抽象过程,学生在此过程中感受到了方法的形成,并且能把这种方法迁移到加法结合律的学习上。】

5.巩固练习(抢答)。(屏示:你能根据运算律填一填吗?)

屏示:96+35=35+□204+□=57+204

37+□=59+□76+□=□+76

这4道练习都用到了哪个运算律?(加法交换律)

三、探索加法结合律。

1.在情境中初步感知加法结合律。

回到操场,刚才是跳绳的同学,现在有什么变化?(屏示:23个踢毽子的女同学)

仔细看(屏示大括号),你看懂了吗?(求参加活动的一共有多少人?)

有三部分,你打算先求什么?(跳绳的有多少人?)(屏示动态结合过程)会列综合算式吗?(28+17)+23。

师:你给28、17加上了括号,表示什么?(先算28加17)先把跳绳的人数合起来,再加上踢毽子的人数。

还可以先求什么?(女生的总人数)(屏示动态结合过程)现在算式怎么列?

28+(17+23),现在括号加在了什么位置?表示什么?(先算17加23),也就是先把女生的人数合起来,再加上男生的人数。

两道算式都能求出参加活动的总人数,会计算吗?要求:一、二两组算第一题,三、四两组算第二题:

汇报:两道算式都等于68人,得数相同!

2.比较异同点,连成等式。(屏示:(28+17)+23,28+(17+23))

两道算式完全一样吗?有什么不同?

——第一道括号在前,表示先把前两个数相加,再和第三个数相加。

第二道括号在后,表示先把后两个数相加,再和第一个数相加:

运算的顺序不同,为什么得数还相同呢?

——因为两道算式都是把28、17、23三个加数相加。

师:三个加数是相同的,就连先后的位置也相同,所以得数相同,连成等式!(动态屏示等式:)

3.感知众多案例,积累感性认识。

凌老师这里还有两道算式,注意看!(屏示:(13+45)+25,13+(45+25))

猜一猜,它们的得数可能会怎样?悄悄告诉同桌!

同桌分工,一人算一道,看看结果怎样?

汇报:左右得数相同,连成等式!(屏示:“=”)

再看,(屏示:(36+18)+22和36+(18+22))。

仔细观察,大胆猜测,它们的结果又会怎样?

认为相同的举手!为什么这么肯定?(因为都是这三个数相加,只不过运算顺序不同,但得数还是相同的)口说无凭!(屏示:?)还得算算!左边?右边?得数确实一样,你们真厉害!(?消失)

猜得这么准,你们是不是隐隐约约发现什么规律了?能说说吗?(屏示三组等式)这三组等式中都是三个数相加,左边都是先把前两个数相加,再和第三个数相加,右边都是?(先把后两个数相加再和第一个数相加)它们的和都怎么样?(不变)。

4.猜测规律,举例验证。

这个发现,会不会仅仅是一种巧合呢?如果换成其他的三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。

像这样举出的例子,被同桌证实和不变的举手!有没有同学举出的例子左右两边和不相同的?这样的例子能举完吗?(屏示省略号)

5.归纳加法结合律。

看来,我们的发现不仅仅是巧合,三个数相加一定有规律!

师生共同小结:三个数相加,可以先把前两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,它们的和不变。

师:这个规律又是我们今天要认识的另一个运算律——加法结合律。(板书:加法结合律)

加法结合律也可以用字母来表示,现在需要几个字母?(3个,a、b、c)

你能用丰母把加法结合律表示出来吗?(板书:(a+b)+c=a+(b+c))

【评析:“猜测一举例验证一归纳结论一运用”是教学运算律的主要思路,此处重视学习方法的指导与形成。两次列式得出两个运算律,第一次重在方法的形成,第二次重在方法的运用。】

6.小结。(略)

四、巩固练习。(作业纸)

1.你能在方框内填出合适的数吗?

(45+36)+64=45+(36+□)

(72+20)+□=72+(20+8)

560+(140+70)=(560+□)+□

2.你能把得数相同的算式连一连吗?

(1)72+16a.(75+25)+48

(2)45+(88+12)b.16+72

(3)75+(48+25)c.(45+88)+12

真了不起!完成得这么好,还有两道算式也想请你们帮帮忙呢,愿意吗?如果这两道算式得数相同,你就起立证明自己的观点,看谁反应快!准备!

(84+68)+3284+(68+23)

哎,站了又坐下去,怎么回事?不能连!为什么?(三个加数中有一个不同了)哪个加数不同?一个是32,一个是23,既然两边不等,那你知道哪边大吗?现在你有什么想说的?(看题要仔细)

【评析:巧用“上当法”,制造错误陷阱,使学生在不经意间犯错。在一路都对的情况下,思维定势让学生必然要错,然而,这样的错误对于学生来说,记忆却异常深刻,旨在使学生认识到,计算时一定要仔细看清题目。】

3.渗透简算意识。

计算比赛:一二两组算左边,三四两组算右边,不写过程,直接写得数,半分钟,看哪组速度最快!

45+(88+12)(45+88)+12

时间到!停笔!我宣布,一二两组快!三四两组慢!凌老师这样评价,你们有话要说吗?尤其是三四两组!不公平?左边算式中先算88加12,正好凑成100。右边呢?(凑不成100)能凑整的快是吗?

好,再来一题!这次公平一点,自己选择,想算哪道就算哪道!师出示:75+(48+25)(75+25)+48

等于多少?你算的是哪道?为什么都选这道?因为先算75加25正好得到100。

原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课研究的内容!

【评析:根据运算律进行简便计算,是下面的内容,对学生来说并不难。但要让学生形成简便计算的意识,比会进行简便计算更重要。因此此处通过口算比赛,让学生在比先后的过程中,萌发如何计算快的意识,其实就是运用运算律使计算简便的过程,继而在自选口算题的过程中,学生能自发地运用运算律。在这里,无需教师过多的讲解,学生在计算中便感受到了运算律的作用。】

《加法交换律和结合律》篇6

教学内容:第56—第58页

教学目标:1,让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算.

2,在探索规律的过程中发展学生的分析比较抽象概括能力,培养学生的符号感.

教者:唐荣

教学设计:

明确今天的教学内容板书:运算律

简介运算律的含义:即运算过程中发现的规律.

一,教学加法交换律:

1,出示例题画面,由学生仔细观察画面并根据题中所提问题(跳绳的有多少人)选择相关条件并进行解答.

2,学生交流各自的解法,说说列式的理由

板书:28+17男生跳绳人数+女生跳绳人数

17+28女生跳绳人数+男生跳绳人数

3,比较两式结果,总结规律

4,由学生说出他们的发现:你还能举出这样的例子吗

5,比较两式异同点,明确式中各部分的名称,逐步导出规律:两数相加,交换加数的位置,它们的和不变.

6,说明这样的例子举不胜举,太多太多,为了简明表示出这一规律,我们用一个字母式子表示为a+b=b+a,明确这里的a,b分别代表两个数,等号表示"不变".

二,数学加法结合律的条件(通过例题发现规律)

1,根据例题的条件,你能求出参加活动一共有多少人吗各自列出算式:

2,交流解题方法,明确算理

(28+17)+2328+(17+23)

由学生分别算出结果,并比较异同,明确虽然顺序不一样,但结果相同,说明这也是一种规律,由各人再举出例子试试,看这一规律是不是具有普遍性.

4,总结归纳这一规律,并学习用字母表示.

5,明确两规律的名称.

三,组织练习

1,做第58页想想做做第1题,说出每一个等式各运用了什么运算定律.

2,做第2题,让学生先填一填,再说出各是怎么想的.

3,完成第4题,说出每组题中哪种方法简便,为什么

4,完成第5题.

四,全课总结

1,由学生说说本节课的收获.

2,教师总结及要求

这节课我们学习加法运算中的两种运算规律,要能准确说出它们的字母表达式,并明白其含义.关于学习它有什么作用,下节课我们再作进一步研究.

教学反思:

通过学习这节课的教学,我有这样的想法:

1,四年级组的学生已具备一定的观察,分析,思考的能力,教学过程中要注意充分利用,引领他们去思考分析培养和提高这方面的能力.

2,课堂上留给学生自主的空间,能够易于让学生发现和理解相关知识,有利于激发和调动他们学习的兴趣.

《加法交换律和结合律》篇7

教学内容:

苏教版小学数学四年级下册第56—57页例2,及“试一试”、“练一练”。

教学目标:

1、让学生经历运用加法运算律进行简便计算的探索过程,掌握其计算方法,会正确地进行简便计算。

2、在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。

3、让学生在学习过程中进一步体验数学与生活的联系,感受简便计算的乐趣,培养学习数学的积极情感。

教学重点:

理解并掌握如何运用加法运算律进行简便计算。教学难点:能灵活运用加法运算律进行简便计算和解决问题。教学准备:电子白板

教学过程

一、复习准备

1、师:上节课我们学习了加法的两个运算律,谁能告诉大家用字母怎样来表示?各是什么意思?

生1:a+b=b+a(两个数相加,交换加数的位置,和不变,这是加法交换律。)

生2:(a+b)+c=a+(b+c)(三个数相加,可以先把前面两个数相加,也可以先把后面两个数相加,它们的和不变。)

2、进行一个抢答小比赛:

师:看得出大家对这两个运算律已经掌握的不错了。接下来我们来一个抢答比赛。比比谁最快说出气球上三个数的和。算好了直接站起来报得数。

(64、19、36)

(38、18、32)

(75、27、63)

出示第一组气球:64、19、36

学生口答后提问:你怎么算的这么快的?你怎么想到先将64和

36相加呢?

明确:把能凑成整百的数先加起来,再与另一个数相加,这样比较简便(板书“简便”)。

出示第二组气球:75、27、73

师:怎么算的?这样算真简便。下一组。

出示第三组气球:38、18、32

师:这题没有两个数相加得100的,我们怎么办的?

3、小结

谈话:看来,要想算的`快,是有窍门的。只要找到了方法,把能凑成整十或整百的数先加起来,再与另一个数相加,这样计算就更简便。我们今天就要一起研究,如何简便计算。(补全课题:简便计算)

二、用加法运算律进行简便计算

1、教学例题。

出示书P57的例题图。

师:会跳绳吗?从图中你了解到哪些数学信息?

能提出用加法计算的问题吗?会列式计算吗?

先让学生独立列式计算。教师巡视,指名板演。

交流反馈:这两位同学的答案对吗?他们分别是怎么算的

框出29+46+54=29+(46+54)

提问:这两个式子为什么相等?这两种方法,哪种方法更简便?他是怎样让计算变得简便的?

谈话:运用加法结合律,将相加能凑成整百的数先加起来,再与另一个数相加,计算更简便。

2、教学“试一试”

谈话:下面两题,你能试着用简便方法计算吗?

出示“试一试”两题:56+69+2178+(47+22),学生独立完成。同桌之间说一说,你是怎么算的,依据是什么?

班级交流:选取一组同桌上台展示计算过程,并讲解算法及依据,其他同学补充。

3、小结:观察黑板上的这3题,我们是如何进行简便计算的?明确:运用加法交换律和加法结合律,我们可以把能凑成整十、整百的数先加起来,再与另一个数相加,让计算变得简便。这就是我们今天学习的,应用加法运算律进行简便计算。(补全课题)

三、及时训练,巩固提高

1、解决实际问题(练习九第7题)

谈话:掌握了简便计算的方法,我们还要用它们来解决实际问题。(课件出示)学生独立完成练习九第7题。

校对答案。

提问:怎样算比较快?

谈话:简便计算可以帮助我们更快地解决问题。因此,解决问题时,如果能简便,尽量简便。

2、两个数相加

谈话:刚才我们做的都是三个数相加的算式,同学们做得不错。接下来还有一些挑战题敢不敢试试?

出示:175+201

师:这一题你能简便运算吗?两个数,如何凑呢?

换个思路,可不可以先“拆”?

师:拆哪个数?(生:拆那个最接近整百的数。)

师根据学生回答板书。

师:先拆再凑的办法真好,谁想出来的,“小数学家”。这两题能用先拆再凑的方法做吗?

出示:354+102205+417

师:同桌先互相说一说,你打算拆哪个数。

学生完成在练习本上。指名板演。交流反馈。

出示246+198。

提问:这道题目,你能想办法简便计算吗?小组之中说一说,再独立计算。

指名板演,共同订正。

明确:198很接近200,我们可以将它先看成200去计算。但是这样多加了2,因此还要减去2。

出示刚才做的几道题目

提问:刚才我们算的这几题,都是怎样让计算变得简便的?分别

改变了哪个数?(学生口答,教师课件将改变的数圈出)

提问:改变的都是什么样的数?

明确:都将一个加数看成和它接近的整百数,然后多加了就减去,少加了就补上。

师:这几道算式,分别应该改变哪个数?

口答:204+328436+97299+153

3、拓展题

提问:现在,你会简便计算了吗?要想运算更简便,关键是什么?那么,我们来几个难点的挑战,不要被打倒哦!

①99+199+2,小组中说一说,再在班级交流。

②36+28+44+72,怎么算更简便?同桌之间说一说,再列式计算。③1+2+3+4+……+98+99+100

好样的,还想继续挑战吗?一百个数呢?(同学们自己独立完成)交流:指名说方法。

师:当之无愧的小数学家呀,想知道世界上最早用运用简便方法计算这题的人吗?

播放视频:数学王子高斯的故事。

师:看了高斯的故事,有什么想说的吗?

师:是的,只要是深刻而持久的思考就会有发现。

四、总结

师:最后回想一下,这节课你有哪些收获?

《加法交换律和结合律》篇8

教学目标

1、知识与技能:

结合具体的情境,引导学生认识和理解结合律的含义。

2、过程与方法:能用字母式子表示加法结合律,初步学会应用加法结合律进行一些简便运算。

3、情感态度与价值观:

①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。

②培养学生观察,比较,抽象,概括的初步思维能力。

教学重点

认识和理解加法结合律的含义。

教学难点

引导学生抽象,概括加法结合律。

教学用具

多媒体课件。

教学过程

一、自主学习

(一)出示自学提纲

自学提纲(P29页例2并完成自学提纲问题,将不会的问题做标注)

1、根据例2情境图中信息列出算式。

2、用你喜欢的方法尝试计算

3、同桌交流自己的算法

4、教师板书出学生的算式及答案

88+104+9688+(104+96)

=192+96=88+200

=288=288

5、对比上面的两道算式,你发现了什么?用自己的话说一说。

(二)学生自学(学生对照自学提纲,自学教材P29页例2,并完成自学提纲问题,将不会的.问题做标注)

(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

(三)自学检测

1、填空

387+425=()+387525+()=137+525

300+600=()+()()+65=()+35

2、连线

56+68150+(25+75)

150+25+7550+B

B+5068+56

A+B+100A+(B+100)

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

(引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

(二)师生互探

1、解答各小组自学中遇到不会的问题。

(1)让学生提出不会的问题,并让学生解决。

(2)教师引导学生解决学生还遗留的问题。

(3)如何用字母表示加法交换律和结合律?

(4)用字母表示这些运算定律有什么优点?

2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

四、达标训练(1--3题必做,4题选做,5题思考题)

1、根据加法结合律填空题。

(1)78+25+22=78+()+25

(2)376+175+25=376+(+)

2、连线。

147+(72+28)A+(B+100)

A+B+100147+72+28

3、简便计算下面各题。

52+27+73285+15+77+23

课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

五、堂清检测

(一)出示检测题

1、根椐加法的运算定律填空

(1)450+320=()+45065+95=95+()

(2)()+100=100+150250+()=125+250

(3)78+25+22=(78+)+()

(4)495+125+75=495+(+)

2、下面的哪些算式符合加法结合律,哪些算式符合加法交换律。

(1)A+(30+9)=A+30+9

(2)15+(7+B)=(15+7)+B

(3)10+20+30+40=10+(20+30)+40

3、连线。

87+22+78(79+83)+17

498+125+75498+(125+75)

(138+136)+16287+(22+78)

79+(83+17)138+136+162

4、简便计算。

98+72+28215+85+73+27

(二)堂清反馈:

作业布置

《加法交换律和结合律》篇9

教学内容:P28例1(加法交换律)P29/例2(加法结合律)

教学目标:

1.引导学生探究和理解加法交换律、结合律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、主题图引入

观察主题图,根据条件提出问题

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米?

等等。

引导学生观察主题图

教师根据学生提出的问题板书。

二、新授

练习本上用自己的方法列出综合算式,解答黑板上问题。

教师巡视,找出课堂上需要的答案,找学生板演。

学生观察第一组算式,发现特点。

引导学生观察第一组算式,总结出:

40+56=56+40

试着再举出几个这样的例子。

根据学生的`举例,进行板书。

通过这几组算式,你们发现了什么?

学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。

教师根据学生的小结,板书。

你能用自己喜欢的方式表示出加法交换律吗?

板书:a+b=b+a

学生用多种形式表示。

符号表示:△+☆=☆+△

引导学生观察第二组算式,总结出:

(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。

学生继续观察几组算式。

出示:

(69+172)+28

69+(172+28)

155+(145+207)

(155+145)+207

通过上面的几组算式,你们发现了什么?

学生总结观察到的规律。

教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。

学生用自己喜欢的方式表示加法结合律。

符号表示:(△+☆)+○=△+(☆+○)

教师板书:

(a+b)+c=a+(b+c)

学生根据这两个运算定律,举一些生活中的例子。

三、巩固练习

P28/做一做

P31/4、1

四、小结

学生小结本节课学习的加法的运算定律。

今天这节课你们都有什么收获?

你能把这些运用于以后的学习中吗?

五、作业:P31/3

板书设计:

加法的运算定律

(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?

40+56=96(千米)56+40=96(千米)88+104+96104+96+88

=192+96=200+88

=288(千米)=288(千米)

40+56=56+40(88+104)+96=88+(104+96)

┆(学生举例)(69+172)+28=69+(172+28)

两个加数交换位置,和不变。155+(145+207)=(155+145)+207

这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,

和不变。这叫做加法结合律。

a+b=b+a(a+b)+c=a+(b+c)

《加法交换律和结合律》篇10

◇教学内容:

义务教育课程标准实验教科书四年级数学.下册P28-29页内容。

◇教学目标:

1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、通过观察、猜想、验证、比较、分析、归纳、合作交流等学习过程,经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。

3、在数学活动中使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

◇教学重点:

理解并掌握加法交换律和加法结合律,能用字母来表示。

◇教学难点:

经历探索加法交换律和结合律的过程,发现并概括出运算规律。

◇教学准备:

多媒体课件

◇教学过程

一、谈话导入,鼓励猜想

1、出示图片牛顿与“万有引力”

2、引入“牛顿因为一只苹果掉下来打到他的头上,大胆猜想,是不是所有物体都往下掉呢?通过进一步的观察、思考,经过坚持不懈的努力,最后发现了万有引力定律。我们在平时也要学会观察和思考生活中的一些习以为常的问题,并努力从中探索规律。

二、合作交流,探索猜想

(一)故事激趣,初次猜想

1、朝三暮四

猴妈妈给小猴们分配桃子,“早上给你们每人3个,晚上每人4个桃。”小猴们很不乐意,“太少了,太少了!”吵着要妈妈多分一些。猴妈妈说:“好的,早上给你们每人4个,晚上每人3个。”小猴们拍手欢呼。听了这个故事,请同学们动脑筋想一想,我们能用数学的眼光说点什么吗?

2、初步感知,大胆猜想

出示:3+4=4+3

师:仔细观察这两个加法算式,你发现了什么?

得出:两个加数交换位置,和不变。(适时板书)

(二)广泛举例,验证猜想。

师:这里是3和4的位置交换了,和没变。仅凭一个例子就得出“两个加数交换位置,和不变”的结论,似乎草率了一点。我们不妨把这个结论当作一个猜想(教师随即将生1的结论加上“?”)

师:既然是猜想,想不想知道猜的对不对?

生:想。

师:我们还得举例验证。

1、举例要求:

(1)任意两个数,求出他们的和;

(2)交换两个加数的位置,再求出两个数的和:

(3)比较两次的结果,判断式子是否相等。

2、学生汇报,师板书。

3、小结:根据自己的等式,再次观察比较,发现:交换两个加数的位置,和不变?这一猜想是对的。(同时将“?”改成“。”)

4、揭题:大家发现的这个规律叫什么呢?

学生交流后,师板书。

5、用字母表示加法交换律。

(1)观察自己仿写的式子,独立思考或小组讨论,然后用自己喜欢的形式表示。

(学生可能使用文字,图形,符号等方式)

(2)用字母表示加法交换律:a+b=b+a

6、追问:加法交换律中,什么变了,什么没有变?

7、原来,猴妈妈就是巧妙地运用了加法交换律中的“变”与“不变”,轻松的解决了分桃的问题,其实同学们在以往的学习中也不知不觉的运用过?(加法计算“验算”的时候)

(3)出示教材56页的例题情境图。

解决:跳绳的有多少人?

28+17=45(人)17+28=45(人)

(三)规律延伸,猜想拓展。

1、根据反思,拓展规律。

师:同学们真棒,从个别例子中形成猜想,并举例验证,获得了加法交换律。但有时,从已有的结论中通过适当的变换、联想,同样可以形成新的猜想,进而形成新的结论。那么“在加法中,交换两个加数的位置和不变。”那么,其它三种运算中呢?

生可能会说出以下几个想法?

“猜想二:减法中,交换两个数的位置差不变?”“猜想三:乘法中,交换两个数的位置积不变?“"猜想四:除法中,交换两个数的位置商不变?”

“猜想五:几个加数时,变换加数的位置和也不变?“

2、举例探究,验证猜想。

师:现在同学们又有了不少新的猜想。这些是与众不同的、全新的`猜想!如果猜想成立,它将加大我们对“加法交换律”的认识。那这猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。

3、汇报交流,验证猜想。

师:哪些同学选择了“猜想二”又是怎样验证的?请生汇报,观察、总结

小结:

a、验证的结果是减法中,交换两个数的位置差会变,猜想不成立

b、只要能举一个反倒,就能验证猜想肯定不成立。

(2)验证猜想三。

师:哪些同学选择了“猜想三”,又是怎样验证的?学牛汇报,观察、小结:乘法中,交换两个数的位置积不变?验证结果是积不变,猜想成立。这就是我们将来要学习的乘法交换律。用字母表示这样的规律。简洁交换律:axb=bXa。

(3)验证猜想四

师:哪些同掌选择了“猜想四”,又是怎样做的?

学生汇报,观察、小结:验证结果是“除法中,交换两个数的位置商会变。”猜想不成立。

《加法交换律和结合律》篇11

教学内容:

青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

教学目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

4.初步形成独立思考、合作交流的意识和习惯。

教学重点:

理解掌握加法的交换律和结合律,并会用字母表示他们。

教学难点:

引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

教学准备:

课件、投影仪、卡片

教学过程:

一、拟定导学提纲,自主预习

(一)创设情境

1.谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

请同学们仔细观察,你能获得了哪些数学信息?

学生观察汇报,

生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2

《加法交换律和结合律》(精选15篇).docx

将本文的Word文档下载到电脑保存

推荐等级

相关阅读

相关内容

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号