多学习 > 教案下载 > 数学教案 > 小学数学教案 > 小学六年级数学教案 > 比例的意义(精选15篇)

比例的意义(精选15篇)

更新时间:2025-08-12 11:34:23

比例的意义篇1

2.比例的意义

教学内容:

教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

教学目标:

1、理解比例的意义。

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

教学重、难点:

理解比例的意义,能正确判断两个比能否组成比例;在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神

教学准备:

教学光盘及多媒体设备、两张照片

教学预设:

一、复习导入

1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

3、化简比:

10:12  25:30  2:8  9:27

4、求下面比的比值:

0.9:3  1/5:1/15  1/4:1/8  1/8:1/16

师:请你说说求比的比值的方法

二、教学比例的意义。

1、教学例3

(1)观察、分析:

呈现放大前后的两张长方形照片及相关的数据。图2是图1放大后得到的。

师:你能分别写出每张照片长和宽的比吗?

(2)比较、发现:

比较写出的两个比,提问:这两个比相等吗?你有什么办法证明?

(3)明确概念:

这两个比相等,把比值相等的两个比用等号连起来,写成一种新的式子,如:

6.4:4=9.6:6          6.4/4=9.6/6

问:这两个等式表示的是怎样的式子?

揭示:像这样的式子就叫做比例。

(4)你能说说什么叫比例吗?

(让学生充分发表意见,在此基础上概括出比例的意义)

(5)学生读一读

明确:有两个比,且比值相等或化简后的最简整数比相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等或化简后的最简整数比相等。

2、学以致用

(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

3、活学活用。

你能根据以上的理解,再写出两个比,并将它们组成比例吗?说出为什么能组成比例。

(可以看他们的比值是否相等,也可以把两个比化简,看是不是相同的比)

三、巩固练习

1、做练一练,学生独立完成,再逐题说说判断的思考过程。

2、做练习九第3题。

先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

3、做练习九第4题

独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

4、做练习九第7题

(1)什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

(2)分组完成,同时四人板书,再讲评。

四:补充练习:

从12的因数中任意选出4个数,再组成两个比例式:

(  )︰(  )=(  )︰(  )

(  )︰(  )=(  )︰(  ) 

五、全课小结

通过本课的学习,你有哪些收获?

你理解比例的哪些有关知识?能和同学做个交流吗?

六、课堂作业

补充习题的相应练习

板书设计:

比例的意义

6.4:4=1.6      9.6:6=1.6

6.4:4=8:5     9.6:6=8:5

6.4:4=9.6:6    6.4/4=9.6/6

表示两个比相等的式子叫做比例。

比例的意义篇2

教学内容苏教版九义小数教科书第十二册正、反比例的意义设计理念[大胆重组教材,落实新课标的三维的目标]学生的数学学习活动应当是一个生动活泼、主动的和富有个性的过程。改变教与学的方式,创设“现实的、有意义的、学生感兴趣的数学问题情境”,引导学生观察分类、自主探索、合作交流,呈现学生“分类方法”的多样化,在两次“分类”中不断激发学生探究两种相关联量变化规律的热情,在不断探究两种相关联量变化规律的活动中体验探索成功的乐趣,树立学好数学的信心。教学目标1、使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例。2、通过观察、比较、归纳,提高学生综合概括推理的能力。3、渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育。4、在学生独立思考的基础上加强交流,体验与同伴合作的快乐,培养合作交流的意识,提高学习的信心。教学过程一、创设情境,导入新课1、为更好地服务于同学们,学校食堂新学期推出了一项优惠奖励措施,同学们,你们知道是什么措施吗?生:一次性交清本学期伙食费的同学可免费享受15次早餐、每月两次水果。师:对,请我们班免费享受15次早餐的同学举手!,你已吃掉了几次?根据他已吃掉的次数,大家能想到什么?生:还剩多少次?师:你为什么马上能想到还剩的次数呢?(生:有关系呗!…………)2、[出示表格(1)]表(1)15次免费早餐,已吃的次数和还剩的次数如下表:已吃的免费早餐(次数)12345……还剩的免费早餐(次数)……如果吃掉()次,还剩()次……;观察表格,你们发现了什么?(吃得次数多,剩余的次数就少)师小结:像这样[出示板书:“一种量变化,另一种量也随着变化”],我们就把这两种量叫做相关联的量[板书:两种相关联的量]这里“已吃的免费早餐(次数)”和“还剩的免费早餐(次数)”是两种相关联的量。在实际生活中两种相关联的量是很多的,你还能举出一些例子吗?3、出示另外四张表格。要求:看懂表格(哪两种相关联的量?为什么?)表(2)一列火车行驶的时间和所行的路程如下表:时间(时)1234567……路程(千米)90270450630……表(3)加工一批机器零件,每小时加工的数量和所需的加工时间如下表:工效(个)1020304050……时间(时)603012……表(4)运一批货物,每天运的吨数和需要的天数如下表:每天运的吨数300150100756050……需要的天数1234……表(5)长征造纸厂的生产情况如下表:时间(天)1234567……生产量(吨)70140210490……二、分类比较,讲授新课(一)请同学们根据五张表格的变化规律,分类。思考:为什么这样分?1、先个体,再同桌,同桌统一最合理的分法。2、集体交流。大部分认可的意见:两类[第一类:(2)(5)第二类(1)(3)(4)](二)观察第一类,教学正比例的意义。师生共同交流:“为什么把表2和表5分为一类”?根据学生回答,老师整理:1、都有两种相关联的量。(如何相关联的?)2、都是一种量变化,另一种量也随着变化。(举例说明变化的规律。)师根据学生发言,相机写出路程和时间的比,并计算比值.(1)=90(2)=902表示什么?180呢?比值呢?(3)=90这个比值表示什么意义?(4)=90360比5可以吗?为什么?*、思考:180千米对应的时间是多少?4小时对应的路程又是多少?在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?(板书:时间、路程、速度)速度是怎样得到的?(板书:)速度也就是路程和时间的比值,比值相当于除法中的什么?3、小结:有什么规律?(板书:[比值][也就是商]不变)(师说明:“不变“也就是“一定”)(三)观察第二类,教学反比例的意义。1、师生共同交流:“为什么把(1)(3)(4)分为一类”?2、提问:(1)这一组题中涉及了几种量?谁与谁是相关联的量?(2)举例说明谁与谁是相对应的两个数?(3)举例说明在这一组题中两种相关联的量是如何变化的?(4)有什么规律?[在讨论变化规律中,发现(3)(4)和(1)也不同]3、通过表(3)和表(4)揭示:“积不变”;“反比例的意义”(四)针对表(1)质疑,加深比例表象:表(1)中“已吃的免费早餐(次数)”和“还剩的免费早餐(次数)”这两种相关联的量,成比例关系吗?为什么?说明:表(1)表中相关联的两种量,虽“一种量变化,另一种量也随着变化”,但它们是和不变,不是积不变,也不是商不变,所以它们不存在比例关系。三、再次分类,突出新知。1、通过刚才的学习,现在,如果再请大家给这五张表格分类,你们准备怎么分?为什么?2、四人小组讨论。3、集体交流并说理。第一种:(2、5)、(3、4)和(1)三类第二种:(2、5、3、4)和(1)两类4、表扬并小结:完善正、反比例的意义5、强化:(1)两种量成正比例必须具备什么条件?(2)两种量成反比例必须具备什么条件?6、字母关系式。四、巩固练习,拓展新知。1、集体判断下面各题中的两种量是否成比例?成什么比例?为什么?一种圆珠笔:总价(元)1.22.43.64.867.2支数123456单价(元)124510支数100502520102、四人小组合作判断下面各题是否成比例?成什么比例?练习三1和4(一人选一道)3、你能举出一个正比例或反比例的例子吗?为什么?生1:一幅地图上的比例尺是1:60000,图上距离和实际距离成正比例关系。生2:圆的直径和它的周长成正比例关系。生3:乘积是1的两个数成反比例关系四、课堂总结,提炼本质。今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质。教后反思1、学生学习热情高涨。激发学生的参与热情是引导学生主动学习的前提,这里我联系在校就餐生活,通过学校新学期的“热门就餐优惠话题”,激起学生探新知的强烈愿望。2、学习方式自主灵活。特别是“分类比较,讲授新课”的教学,经历了“明确探究目标”----“个体独立思考”----“小组合作探究”----“班内汇报交流”----“表1设疑点睛”等几个重要环节,注重了科学的学习方法的渗透与培养,尊重学生的学习成果,在尊重的基础上,揭示“正反比例的意义”。

3、数学源于生活,又用于生活。联系生活创设问题情境是新课标精神的体现。教学中,我能从创设生活数学问题入手,进入新课学习,在学生掌握新知的基础上,又回到问题情境的创设上,同时还提供一个更具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”4、重组教材,使思维更具灵性。教材中是把正反比例分块教学,虽有便于教学的优势,学生也易于接受,但我觉得,会使学生的思维过于模式化,缺乏灵性。为此,我大胆重组教材中的正反比例例子,把正反比例的意义通过五张表格分类探究进行教学,从而水到渠成地落实了三维目标。

比例的意义篇3

1、成正比例的量教学内容:成正比例的量教学目标:1.   使学生理解正比例的意义,会正确判断成正比例的量。2.   使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。教学重点:正比例的意义。教学难点:正确判断两个量是否成正比例的关系。教学过程:一揭示课题1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?在教师的此导下,学生会举出一些简单的例子,如:(1)   班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。(2)   送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。(3)   上学时,去的速度快了,时间用少了;速度慢了,时间用多了。(4)   排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量二探索新知1.教学例1(1)   出示例题情境图。问:你看到了什么?生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。(2)出示表格。高度/㎝24681012体积/㎝350100150200250300底面积/㎝2问:你有什么发现?学生不难发现:杯子的底面积不变,是25㎝2。板书:教师:体积与高度的比值一定。(2)   说明正比例的意义。①   在这一基础上,教师明确说明正比例的意义。因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。②   学生读一读,说一说你是怎么理解正比例关系的。要求学生把握三个要素:第一,两种相关联的量;第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三,两个量的比值一定。(3)   用字母表示。如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用正的式子表示:(4)   想一想:师:生活中还有哪些成正比例的量?学生举例说明。如:长方形的宽一定,面积和长成正比例。每袋牛奶质量一定,牛奶袋数和总质量成正比例。衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例。2.教学例2。(1)   出示表格(见书)(2)   依据下表中的数据描点。(见书)(3)   从图中你发现了什么?这些点都在同一条直线上。(4)   看图回答问题。①   如果杯中水的高度是7㎝,那么水的体积是多少?生:175㎝3。②   体积是225㎝3的水,杯里水面高度是多少?生:9㎝。③   杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?生:水的体积是350㎝3,相对应的点一定在这条直线上。(5)   你还能提出什么问题?有什么体会?通过交流使学生了解成正比例量的图像特往。3.做一做。过程要求:(1)   读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?比值表示每小时行驶多少千米。(2)   表中的路程和时间成正比例吗?为什么?成正比例。理由:①   路程随着时间的变化而变化;②   时间增加,路程也增加,时间减少,路程也随着减少;③   种程和时间的比值(速度)一定。(3)   在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。(4)   行驶120km大约要用多少时间?(5)   你还能提出什么问题?4.课堂小结说一说成正比例关系的量的变化特征。三巩固练习完成课文练习七第1~5题。

2、成反比例的量教学内容:成反比例的量教学目标:1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。2.根据反比例的意义,正确判断两种量是否成反比例。教学重点:反比例的意义。教学难点:正确判断两种量是否成反比例。教学过程:一导入新课1.让学生说一说成正比例的两种量的变化规律。回答要点:(1)   两种相关联的量;(2)   一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;(3)   两个量的比值一定。2.举例说明。如:每袋大米质量相同,大米的袋数与总质量成正比例。理由:(1)   每袋大米质量一定,大米的总质量随着袋数的变化而变化;(2)   大米的袋数增加,大米的总质量也相应增加,大米的袋数减少,大米的总质量也相应减少;(3)   总质量与袋数的比值一定。所以,大米的袋数与总质量成正比例。板书:3.揭示课题。今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?板书课题:成反比例的量二探索新知1.教学例3。(1)   出示课文例题情境图。问:从图中你看到了什么?①   把相同体积的水倒入底面积不同的杯子。②   杯里水的高度不相同。③   杯子底面积小的,水的高度比较高,杯子底面积大的,水的高度比较低。(2)出示表格。高度/㎝302015105底面积/㎝21015203060体积/㎝3请学生认真观察表中数据的变化情况。问:你有什么发现?学生不难发现:底面积越大,水的高度越低,底面积越小,水的高度越高,而且高底和底面积的乘积(水的体积)一定。教师板书配合说明这一规律:30×10=20×15=15×20=……=300(3)归纳反比例的意义。在这一基础上,教师明确说明反比例的意义,并板书。因为水的体积一定,所以水的高度随着底面积的变化而变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定。板书出示:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。(4)   用字母表示。如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子可以怎么表示?学生探讨后得出结果。y=k(一定)2.想一想。师:生活中还有哪些成反比例的量?在教师的引导下,学生举例说明。如:(1)   大米的质量一定,每袋质量和袋数成反比例。(2)   教室地板面积一定,每块地砖的面积和块数成反比例。(3)   长方形的面积一定,长和宽成反比例。3.你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察课文“你知道吗”中的图像。(1)   反比例关系也可以用图像来表示。(2)   表示两个量的点不在同一条直线上,点所连接起来是一条曲线。(3)   图像特征不要求掌握。4.课堂小结。说一说成反比例关系的量的变化特征。三巩固练习完成课文练习七第6~11题。

3、练习课(一)教学内容:练习课(一)教学目标:1.使学生进一步理解反比例的意义,能正确判断两种量是否成反比例。2.使学生能正确判断两种量是否成比例,成什么比例,提高学生的人析能力。教学过程:一基础练习1.填一填,说一说。(1)   每箱木瓜的个数一定,运来木瓜的箱数和木瓜总个数如下表。箱数/箱481632总个数/个3264①   把表格填写完整,说一说你是怎么做的。②   说一说箱数和总个数的变化情况。③   这里哪一个量不变?④   箱数和总个数成什么比例?(2)   木瓜的总个数一定,每箱个数与所装的箱数情况如下表。每箱个数481020箱数5025①   你能把表格填写完整吗?②   说一说每箱个数和箱数的变化情况。③   这里哪一个量一定?④   每箱个数和箱数成什么比例?(3)   看一本书,每天看的页数和所看天数的情况如下表。每天看的页数48101620所看天数804032①   把表格填写完整。②   说一说你是怎么做的。③   这里哪一个量一定,你是怎么知道的?④   每天看的页数与所看天数有什么关系?说明理由。(4)征订《学习报》,征订的份数与应付的钱数如下表。征订份数/份5040302010应付的钱数/元15001200①   请你把表格补充完整。②   征订的份数与应付的钱数成什么比例?说明理由。2.正、反比例意义。问:你是怎样判断两种量是否成正比例或反比例的?正反比例关系和反比例关系有什么不同?过程要求:(1)   学生独立思考,尝试归纳。(2)   同学之间互相交流,学会表达。(3)   全班交流。使学生明确几个要点:正比例:①   两种相关联的量。②   一种量增加,另一种量也相应增加;一种量减少,另一种量也相应减少。③   两种量的比值一定。反比例:①   两种相关联的量;②   一种理增加,另一种量反而减少;一种量减少,另一种量反而增加;③   两种量的乘积一定。二综合练习判断下面各题中两种量是否成下比例或反比例。(1)每袋面粉的质量一字,面粉的总质量和袋数。(  )(2)一个人的年龄和体重。(    )(3)长方形的周长和宽。(    )(4)长方形的长一定,面积与宽。(    )(5)三角形的高一定,面积与底。(    )(6)圆的面积与半径。(    )过程要求:(1)   逐一出示以上各题。(2)   学生判断,并说明理由。(3)   教师小结。(方法,关键)

4、练习课(二)教学内容:练习课(二)教学目标:通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断正、反比例的关系,进一步发展学生的分析、比较、抽象、概括等能力。教学过程:一复习判断下面每题中的两种量是成正比例还是成反比例?1.速度一定,路程和时间。2.正方形的边长和它的面积。3.生产总时间一定,生产一个零件所用时间和零件总数。4.中国儿童报的订数和钱数。二引导练习这节课我们要通过比较弄清成正、反比例的量有什么相同点和不同点。板书课题:正、反比例的比较出示表格。表一:路程/千米4080160200320时间/时12458表二速度/每时行多少千米12090604030时间/时3469121.说一说。提问:从表1中,你怎样发现速度是一定的?根据什么判断路程和时间成正比例?从表2中,你怎样发现路程是一定的?根据什么判断速度和时间成反比例?2.想一想:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?师板书:速度×时间=路程  师:当速度一定时,路程和时间成什么比例关系?当路程一定时,速度和时间成什么比例关系?当时间一定时,路程和速度成什么比例关系?3.比较正比例和反比例关系。通过前面的例子,比较正比例关系和反比例关系。你能写出它们的相同点和不同点吗?学生同桌或前后桌讨论,教师提问并板书如下:相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。不同点:正比例:两种量中相对应的两个数的积一定。关系式y=k(一定)4.小结;正比例和反比例有什么相同点和不同点?判断两种量是否比例,成什么比例的,方法是什么?作业

比例的意义篇4

一、教材分析

1、教学内容:人教版六年级下册P39正比例的意义。

2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的.实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

3、教学重点,难点、关键:

教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

4、教学目标:

根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

二、学况分析

六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

三、教法

遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

四、学法

引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

五、教学过程

本节课我安排了六个教学环节

第一个环节:游戏导入,激发兴趣

用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

第二环节:引导观察,启发思考

教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

第三环节:创设情景,观察实验

用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

第四环节:探究成正比例的量

学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

第五环节:巩固练习,拓展提高

第六环节:全课小结

六、效果预测

在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

比例的意义篇5

教学内容:教科书第19—21页,练习六的1—3题。

教学目的:

1.使学生理解,能够根据判断两种量是不是成正比例。

2.初步培养学生用事物相互联系和发展变化的观点来分析问题。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程 :

一、复习

用,投影片逐一出示下面的题目,让学生回答。

1.已知路程和时间,怎样求速度?板书:           =速度

2.已知总价和数量,怎样求单价?板书:           =单价

3.己知工作总量和工作时间,怎样求工作效率?板书:    

=工作效率

4,已知总产量和公顷数,怎样求公顷产量?板书:                =公顷产量

二、导人新课

教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:)

三、新课

1.教学例1。

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:

提问:

“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)

“表中有哪几种量?”

“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”

“这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)

教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”

教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?

让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来:       =60.      =60,        =60……            让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。

然后教师指着         =60,      =60           = 60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书:             =速度(—定)

教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)

2.教学例2。

出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

让学生观察上表,并回答下面的问题:

(1)表中有哪两种量?

(2)米数扩大,总价怎样?米数缩小,总价怎样?

(3)相对应的总价和米数的比各是多少?比值是多少?

当学生回答完第二个问题后,教师板书:       =3.1,   =3.1,                =3.1……

然后进一步问:

“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书:        =单价(一定)

教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。

3.抽象概括。

教师:请同学们比较一下刚才这两个例题,回答下面的问题;

(1)都有几种量?

(2)这两种量有没有关系?

(3)这两种量的比值都是怎样的?

教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)

接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?

最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?

学生回答后,教师板书:           =K(一定)

4,教学例3。

出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

教师引导:

“面粉的总重量和袋数是不是相关联的量?”·

“面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书:          =每袋面粉的重量(一定))

“已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”

5.巩固练习。

让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。

四、课堂练习

完成练习六的第1—3题。

第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)

第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。

比例的意义篇6

教学过程:

一、复习铺垫

1、下面两种量是不是成正比例?为什么?

购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

2、成正比例的量有什么特征?

二、探究新知

1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。

2、教学P42例3。

(1)引导学生观察上表内数据,然后回答下面问题:

A、表中有哪两种量?这两种量相关联吗?为什么?

B、水的高度是否随着底面积的变化而变化?怎样变化的?

C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

D、这个积表示什么?写出表示它们之间的数量关系式

(2)从中你发现了什么?这与复习题相比有什么不同?

A、学生讨论交流。

B、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)

三、巩固练习

1、想一想:成反比例的量应具备什么条件?

2、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

四、全课小节

这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

五、课堂练习

P45~46练习七第6~11题。

比例的意义篇7

教学内容:教科书第19—21页正比例的意义,练习六的1—3题。

教学目的:

1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。

2.初步培养学生用事物相互联系和发展变化的观点来分析问题。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程:

一、复习

用,投影片逐一出示下面的题目,让学生回答。

1.已知路程和时间,怎样求速度?板书:=速度

2.已知总价和数量,怎样求单价?板书:=单价

3.己知工作总量和工作时间,怎样求工作效率?板书:

=工作效率

4,已知总产量和公顷数,怎样求公顷产量?板书:=公顷产量

二、导人新课

教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)

三、新课

1.教学例1。

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:

提问:

“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)

“表中有哪几种量?”

“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”

“这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)

教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”

教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?

让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来:=60.=60,=60……让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。

然后教师指着=60,=60=60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书:=速度(—定)

教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)

2.教学例2。

出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

让学生观察上表,并回答下面的问题:

(1)表中有哪两种量?

(2)米数扩大,总价怎样?米数缩小,总价怎样?

(3)相对应的总价和米数的比各是多少?比值是多少?

当学生回答完第二个问题后,教师板书:=3.1,=3.1,=3.1……

然后进一步问:

“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书:=单价(一定)

教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。

3.抽象概括正比例的意义。

教师:请同学们比较一下刚才这两个例题,回答下面的问题;

(1)都有几种量?

(2)这两种量有没有关系?

(3)这两种量的比值都是怎样的?

教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)

接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?

最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?

学生回答后,教师板书:=K(一定)

4,教学例3。

出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

教师引导:

“面粉的总重量和袋数是不是相关联的量?”·

“面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书:=每袋面粉的重量(一定))

“已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”

5.巩固练习。

让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。

四、课堂练习

完成练习六的第1—3题。

第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)

第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。

比例的意义篇8

教学内容:教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

教学目标:

1、理解比例的意义。

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

教学重、难点:理解比例的意义,能正确判断两个比能否组成比例;在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神

教学准备:教学光盘及多媒体设备、两张照片

教学过程:

一、复习导入

1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

3、化简比:

12:4       8:18 

4、求下面比的比值:

12:4       8:18        5.4:0.9       4.4:4

说说求比的比值、化简比的方法

二、教学比例的意义。

1、教学例3

(1)观察、分析:呈现放大前后的两张长方形照片及相关的数据。图2是图1放大后得到的。

师:你能分别写出每张照片长和宽的比吗?

(2)比较、发现:比较写出的两个比,说说这两个比有什么关系?

师:你是怎样发现的?

(适当引导学生分别求出写出的比的比值,或把它们分别化成最简比)

(3)明确概念:这两个比相等,把比值相等的两个比用等号连起来,写成一种新的式子,如:

6.4:4=9.6:6          6.4/4=9.6/6

问:这两个等式表示的是怎样的式子?

揭示:像这样的式子就叫做比例。

(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

2、学以致用

(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

3、活学活用。

你能根据以上的理解,再写出两个比,并将它们组成比例吗?说出为什么能组成比例。

(可以看他们的比值是否相等,也可以把两个比化简,看是不是相同的比)

三、巩固练习

1、做练一练,学生独立完成,再逐题说说判断的思考过程。

2、做练习九第3题。

先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

3、做练习九第4题

独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

4、做练习九第7题

(1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

(2)分组完成,同时四人板书,再讲评。

四:补充练习:从12的因数中任意选出4个数,再组成两个比例式:

(  )︰(  )=(  )︰(  )

(  )︰(  )=(  )︰(  ) 

五、全课小结

通过本课的学习,你有哪些收获?

你理解比例的哪些有关知识?能和同学做个交流吗?

六、课堂作业

补充习题的相应练习

板书设计:

比例的意义

6.4:4=1.6      9.6:6=1.6

6.4:4=9.6:6    6.4/4=9.6/6

表示两个比相等的式子叫做比例。

10:12和25:30

因为10:12=5/6   25:30=5/6

所以10:12和25:30能组成比例:10:12=25:30

课前思考:

教材借助例题3中两张不同尺寸的照片的长与宽,来组织学生先思考放大前照片的长和宽的比,接着写出放大后的照片的长和宽的笔,然后探究这两个比有什么关系,最后揭示比例的概念。这一环节处理结束后,教材又提供了这样一个问题的探讨:分别写出照片放大后和放大前长的比和宽的比,这两个比能组成比例吗?面对这些问题可能很多学生被搞得有点头晕了。在分析了教材和学生学习情况后,我想能否在这里做一些改动,让课堂适当开放些,如出示了例题3的两张照片后,提问:同学们你能写出几个不同的比吗?然后四人一组进行讨论,看看这些比有什么特点,能否有所发现。在学生交流的过程中,教师很自然地引出比例的意义。

课前思考:

比例的意义是传统内容,教材上还是承接第一课时中的放大与缩小来得到两组比例。在教学方法上我还是比较倾向于采用潘老师的方法。分两次提问,每次提问后可让学生说说要我们写什么与什么的比?等学生弄明白要求后再写。如果放开,写比估计学生是可以得到的,但对这4个比的处理要复杂了。

第二,在比例的导入中,潘老师的设计是:

(2)比较、发现:比较写出的两个比,说说这两个比有什么关系?

师:你是怎样发现的?

(适当引导学生分别求出写出的比的比值,或把它们分别化成最简比)

我觉得上面的提问指向不明确,学生可能很难想到,是否改为:这两个比相等吗?你有什么办法证明?

第三:为了节省时间,是否可以将化简比与求比值的数据换用练一练中的题目,这样学生可直接根据复习中的结果进行判断。

课前思考:

和高老师一样,我觉得求比值和化简比可以采用练一练中的题目,一方面是可以节省时间,另一方面是由于求比值和化简比是上学期学过的内容,有一部分学习困难生肯定遗忘了。整数比学生都会化简,小数比和分数比需要和学生强调一下。练一练中正好安排了小数、分数、整数求比值。

在练习的过程中应该和学生强调,如果要写出两个数之间的比,特别是填空题,一定要是一个最简整数比。

练习第7题,相对应的两个量可以让学生谈谈对这话的理解,然后教师再指出什么是相对应的量。

课后反思:

因为曾经教过以前的教材,所以感觉这一课的学习内容对于学生来说应该不存在太大的问题,教学时应在理解比例的意义和应用比例的意义判断两个比能否组成比例这两个教学重点处多花时间,多从学生角度来设计教学。

结果实际教学时,我遗漏了一个环节即复习比值和化简比,所以课堂上有些学生在判断两个比能否组成比例时花费的时间较多。新授部分,我在出示了例题3的图片后,就让学生根据已知的一些信息写出不同的比,然后计算一下这些比的比值,再谈论一下这些比又什么特点。学生们基本都能写出不同的比并计算出比值,然后发现其中有些比的比值是相等的。这时,我就顺势向学生介绍了比例。这一部分的教学比较顺利,紧接着就处理了后面的练习。教材安排的练习较多,第7题还未详细讲评下课铃声就响了。所以学生在完成作业中类似第7题的时候,还是存在一些困难。现在想来,在教学例题3时,我应该就渗透“相对应的量”,让学生理解那些数量是相对应的,这样就会避免在出现很多数量时不知道该如何入手。

课后反思:

比例的意义这课其实很好掌握,判断两个比是否成比例,其实只要判断这两个比的比值是否相等或者说是最简整数比是否相等。从学生课上的反馈来说,掌握得不错,可一到写作业的时候,总有格式上的错误或者是书写语言上的不完整。

正如高老师所说,在一个班级教授例题的时候,当我提问这两个比有什么关系时?学生是一脸茫然,不能说到点上,但在另一个班级我提问;这两个比相等吗?怎么样来证明?马上有学生提出把他们化简成最简整数比来比较。不同的问法得到了不同的效果,看来,教师的语言组织在课堂上对学生很有影响力,话不在多,而在精练、精准。这也使我有了一定的思考:平时课堂上我的语言其实很罗嗦、很贫乏,一直怕学生记不住,一再的强调和重复。这或许也是学生提不起学习兴趣的原因,是该好好反思一下了。

课后反思:

在学习比例意义时,在学生充分感知的基础上,揭示比例的意义。在此同时要使学生在学习过程中,理解比值相等时才能组成比例,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解让学生进行判断和自己写比例。最后还增加观察比较:比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系。

课后反思:

因为从放大照片导入,学生还是能比较容易理解找相对应的边的比,例题中可以找到很多组比,并理解它们的比值相等才能确保不变形,所以学生比较容易理解比例的意义。在掌握了比例的基本性质后,学习判断两个比是否成比例,学生的思路基本正确,但书写格式不规范,还需强调。并要引导学生体会用比较清晰的表达方式来表示思考过程。

比例的意义篇9

教学目标

1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.

教学重点

理解正反比例的意义,掌握正反比例的变化的规律.

教学难点

理解正反比例的意义,掌握正反比例的变化的规律.

教学过程

一、导入新课

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量

(三)教师谈话

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学

(一)成正比例的量

例1.一列火车行驶的时间和所行的路程如下表:

时间(时)

12345678……

1.写出路程和时间的比并计算比值.

(1)

(2)2表示什么?180呢?比值呢?

(3)这个比值表示什么意义?

(4)360比5可以吗?为什么?

……

2.思考

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

3.小结:有什么规律?

教师板书:商不变

(二)成反比例的量

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间

2.教师提问

(1)计算工效和时间的乘积.

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)

3.小结:有什么规律?(板书:积不变)

(三)不成比例的量

1.出示表格

2.教师提问

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变

(四)结合三组题观察、讨论、总结变化规律.

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化

不同点:第一组商不变,第二组积不变,第三组和不变.

总结:

3.分别概括正、反比例的意义

4.强调第三组题中两种相关联的量叫做不成比例

5.教师提问

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式

三、巩固练习

判断下面各题是否成比例?成什么比例?

1.一种圆珠笔

(1)表中有哪两种相关联的量?

(2)说出几组这两种量中相对应的两个数的比

(3)每组等式说明了什么?

(4)两种相关的量是否成比例?成什么比例?

2.当速度一定,时间路程成什么比例?

当时间一定,路程和速度成什么比例?

当路程一定,速度和时间成什么比例?

3.长方形的面一定,长和宽

4.修一条路,已修的米数和剩下的米数.

四、课堂总结

今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质.

五、课后作业

(一)判断下面每题中的两种量是不是成正比例,并说明理由.

1.苹果的单价一定,购买苹果的数量和总价.

2.轮船行驶的速度一定,行驶的路程和时间.

3.每小时织布米数一定,织布总米数和时间.

4.长方形的宽一定,它的面积和长.

(二)判断下面每题中的两种量是不是成反比例,并说明理由.

1.煤的总量一定,每天的烧煤量和能够烧的天数.

2.种子的总量一定,每公顷的播种量和播种的公顷数.

3.李叔叔从家到工厂,骑自行车的速度和所需时间.

4.华容做12道数学题,做完的题和没有做的题.

六、板书设计

比例的意义篇10

第一课时  比例的意义和基本性质

教学内容:比例的意义和基本性质。

教学要求:使学生理解比例的意义,会用比例的意义正确地判断两个比是否 成比例,使学生理解比例的基本性质。

教学重点:理解比例的意义和基本性质。

教学难点 :灵活地判断两个比是否组成比例。

教   具:投影机等。

教学过程 :

一、复习。

1、什么叫做比?什么叫做比值?

2、求出下面各比值,哪些比的比值相等?

12:16       :    4.5:2.7    10:6

二、提示课题,引入新课。

1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。

2、引入新课。

三、导演达标。

1、教学比例的意义。

(1)引导学生观察课本的表格后回答:

A、第一次所行驶的路程和时间的比是什么?

B、第二次所行驶的路程和时间的比是什么?

C、这两次比的比值各是什么?它们有什么关系?

板书:80:2=200:5或     =

(2)引出比例的意义。

A、表示两个比相等的式子叫做比例。

B、讨论:组成比例必须具备什么条件?如何判断两个比是不是组成比例的?比和比例有什么区别?

C、判断两个比能不能组成比例,关键是看两个比的比值是否相等。

D、做一做。(先练习,后讲评)

2、教学比例的基本性质。

(1)看书后回答:

A、什么叫做比例的项?

B、什么叫做比例的外项、内项?

(2)引导学生总结规律?

先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。

3、练习:判断下面的哪组比可以组成比例。

6:9和9:12     1.4:2和7:10

四、巩固练习:第一、二题。(指名回答,集体订正

比例的意义(精选15篇).docx

将本文的Word文档下载到电脑保存

推荐等级

相关内容

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号