更新时间:2025-08-12 11:34:15
(1)知识目标:
1、在平面直角坐标系中,探索并掌握圆的标准方程;
2、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;
3、利用圆的方程解决与圆有关的实际问题.
(2)能力目标:
1、进一步培养学生用解析法研究几何问题的能力;
2、使学生加深对数形结合思想和待定系数法的理解;
3、增强学生用数学的意识.
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.
2、教学重点、难点
(1)教学重点:圆的标准方程的求法及其应用.
(2)教学难点:①会根据不同的已知条件,利用待定系数法求圆的标准方程
②选择恰当的坐标系解决与圆有关的实际问题.
3、教学过程
(一)创设情境(启迪思维)
问题一:
已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导]:画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)
将x=2.7代入,得
即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:
1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
答:x2+y2=r2
2、如果圆心在,半径为时又如何呢?
[学生活动]:探究圆的方程。
[教师预设]:方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为 ①
把①式两边平方,得(x―a)2+(y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1、写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在,半径为
(3)经过点,圆心在点
2、根据圆的方程写出圆心和半径
(1) (2)
ii.灵活应用(提升能力)
问题四:1、求以为圆心,并且和直线相切的圆的方程.
[教师引导]由问题三知:圆心与半径可以确定圆.
2、求过点,圆心在直线上且与轴相切的圆的方程.
[教师引导]应用待定系数法寻找圆心和半径.
3、已知圆的方程为,求过圆上一点的切线方程.
[学生活动]探究方法
[教师预设][多媒体课件演示]
方法一:待定系数法(利用几何关系求斜率—垂直)
方法二:待定系数法(利用代数关系求斜率—联立方程)
方法三:轨迹法(利用勾股定理列关系式)
方法四:轨迹法(利用向量垂直列关系式)
4、你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是:
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。
将本文的Word文档下载到电脑保存
推荐等级教材:北师大义务教育课程标准教科书七年级一册(P89--93)一、知识与能力目标:1、经历探索规律并用代数式表示规律的过程...
教学目的: 1、使学生初步掌握长方形、正方形的基本特征,会在方格纸上画长方形和正方形。 2、初步认识平行四边形...
一、教学目标 :经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活...
背景介绍本学期,我们二中八年级的数学老师在渤海大学范文贵老师的指导下进行了一些教学上的改革尝试。范老师现正在华东师...
一、相关背景介绍建构主义理论告诉我们,学习是学生在原有认知经验基础上主动建构新知识的过程。这一建构过程实际上需要学...
“生成”是新课程倡导的一个重要教学理念。“生成”对应于“预设”。传统的课堂教学,常常只有预设而不见生成。教师期望...
教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意...
教学目标 (1)熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断.(2)理解一条直线到另一条直线的角的概念...
教学目标 (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练...
教学目标 (1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都...
教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法;(...
教学目标 (1)能熟练运用不等式的基本性质来解不等式;(2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号