多学习 > 教案下载 > 数学教案 > 初中数学教案 > 八年级数学教案 > 平行线等分线段定理(精选7篇)

平行线等分线段定理(精选7篇)

更新时间:2025-08-12 11:34:15

平行线等分线段定理篇1

教学建议

1.

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

2.的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”.

推论的用途:(1)平分已知线段;(2)证明线段的倍分.

重难点分析

本节的重点是.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

本节的难点也是.由于学生初次接触到,在认识和理解上有一定的难度,在加上的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.

教法建议

的引入

生活中有许多的例子,并不陌生,的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业 本、栅栏、等等;

②可用问题式引入,开始时设计一系列与概念相关的问题由学生进行思考、研究,然后给出和推论.

教学设计示例

一、教学目标 

1.使学生掌握及推论.

2.能够利用任意等分一条已知线段,进一步培养学生的作图能力.

3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

4.通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1.教学重点:

2.教学难点 :

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤 

【复习提问】

1.什么叫平行线?平行线有什么性质.

2.什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到)

:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

已知:如图,直线,.

求证:.

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

证明:过点作分别交、于点、,得和,如图.

∵,

又∵,,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

再引导学生观察下图,在中,,,则可得到,由此得出推论2.

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

接下来讲如何利用来任意等分一条线段.

例 已知:如图,线段.

求作:线段的五等分点.

作法:①作射线.

②在射线上以任意长顺次截取.

③连结.

④过点.、、分别作的平行线、、、,分别交于点、、、.

、、、就是所求的五等分点.

(说明略,由学生口述即可)

【总结、扩展】

小结:

(l)及推论.

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

(4)应用定理任意等分一条线段.

八、布置作业 

教材P188中A组2、9

九、板书设计 

十、随堂练习

教材P182中1、2

平行线等分线段定理篇2

教学建议

1.

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

2.的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”.

推论的用途:(1)平分已知线段;(2)证明线段的倍分.

重难点分析

本节的重点是.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

本节的难点也是.由于学生初次接触到,在认识和理解上有一定的难度,在加上的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师教学中要加以注意.

教法建议

的引入

生活中有许多的例子,并不陌生,的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业 本、栅栏、等等;

②可用问题式引入,开始时设计一系列与概念相关的问题由学生进行思考、研究,然后给出和推论.

教学设计示例

一、教学目标

1.使学生掌握及推论.

2.能够利用任意等分一条已知线段,进一步培养学生的作图能力.

3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

4.通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1.教学重点:

2.教学难点:

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤

【复习提问】

1.什么叫平行线?平行线有什么性质.

2.什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到)

:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

已知:如图,直线,.

求证:.

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

证明:过点作分别交、于点、,得和,如图.

∵,

又∵,,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

再引导学生观察下图,在中,,,则可得到,由此得出推论2.

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

接下来讲如何利用来任意等分一条线段.

例 已知:如图,线段.

求作:线段的五等分点.

作法:①作射线.

②在射线上以任意长顺次截取.

③连结.

④过点.、、分别作的平行线、、、,分别交于点、、、.

、、、就是所求的五等分点.

(说明略,由学生口述即可)

【总结、扩展】

小结:

(l)及推论.

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

(4)应用定理任意等分一条线段.

八、布置作业 

教材P188中A组2、9

九、板书设计

十、随堂练习

教材P182中1、2

平行线等分线段定理篇3

教学建议

1.

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

2.的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”.

推论的用途:(1)平分已知线段;(2)证明线段的倍分.

重难点分析

本节的重点是.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

本节的难点也是.由于学生初次接触到,在认识和理解上有一定的难度,在加上的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师教学中要加以注意.

教法建议

的引入

生活中有许多的例子,并不陌生,的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业 本、栅栏、等等;

②可用问题式引入,开始时设计一系列与概念相关的问题由学生进行思考、研究,然后给出和推论.

教学设计示例

一、教学目标

1.使学生掌握及推论.

2.能够利用任意等分一条已知线段,进一步培养学生的作图能力.

3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

4.通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1.教学重点:

2.教学难点:

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤

【复习提问】

1.什么叫平行线?平行线有什么性质.

2.什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到)

:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

已知:如图,直线,.

求证:.

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

证明:过点作分别交、于点、,得和,如图.

∵,

又∵,,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

再引导学生观察下图,在中,,,则可得到,由此得出推论2.

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

接下来讲如何利用来任意等分一条线段.

例 已知:如图,线段.

求作:线段的五等分点.

作法:①作射线.

②在射线上以任意长顺次截取.

③连结.

④过点.、、分别作的平行线、、、,分别交于点、、、.

、、、就是所求的五等分点.

(说明略,由学生口述即可)

【总结、扩展】

小结:

(l)及推论.

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

(4)应用定理任意等分一条线段.

八、布置作业 

教材P188中A组2、9

九、板书设计

十、随堂练习

教材P182中1、2

平行线等分线段定理篇4

教学建议

1.

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

2.的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”.

推论的用途:(1)平分已知线段;(2)证明线段的倍分.

重难点分析

本节的重点是.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

本节的难点也是.由于学生初次接触到,在认识和理解上有一定的难度,在加上的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.

教法建议

的引入

生活中有许多的例子,并不陌生,的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业 本、栅栏、等等;

②可用问题式引入,开始时设计一系列与概念相关的问题由学生进行思考、研究,然后给出和推论.

教学设计示例

一、教学目标 

1.使学生掌握及推论.

2.能够利用任意等分一条已知线段,进一步培养学生的作图能力.

3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

4.通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1.教学重点:

2.教学难点 :

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤 

【复习提问】

1.什么叫平行线?平行线有什么性质.

2.什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到)

:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

已知:如图,直线,.

求证:.

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

证明:过点作分别交、于点、,得和,如图.

∵,

又∵,,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

再引导学生观察下图,在中,,,则可得到,由此得出推论2.

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

接下来讲如何利用来任意等分一条线段.

例 已知:如图,线段.

求作:线段的五等分点.

作法:①作射线.

②在射线上以任意长顺次截取.

③连结.

④过点.、、分别作的平行线、、、,分别交于点、、、.

、、、就是所求的五等分点.

(说明略,由学生口述即可)

【总结、扩展】

小结:

(l)及推论.

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

(4)应用定理任意等分一条线段.

八、布置作业 

教材P188中A组2、9

九、板书设计 

十、随堂练习

教材P182中1、2

平行线等分线段定理篇5

教学建议

1.

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

2.的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”.

推论的用途:(1)平分已知线段;(2)证明线段的倍分.

重难点分析

本节的重点是.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

本节的难点也是.由于学生初次接触到,在认识和理解上有一定的难度,在加上的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.

教法建议

的引入

生活中有许多的例子,并不陌生,的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业 本、栅栏、等等;

②可用问题式引入,开始时设计一系列与概念相关的问题由学生进行思考、研究,然后给出和推论.

教学设计示例

一、教学目标 

1.使学生掌握及推论.

2.能够利用任意等分一条已知线段,进一步培养学生的作图能力.

3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

4.通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1.教学重点:

2.教学难点 :

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤 

【复习提问】

1.什么叫平行线?平行线有什么性质.

2.什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到)

:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

已知:如图,直线,.

求证:.

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

证明:过点作分别交、于点、,得和,如图.

∵,

又∵,,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

再引导学生观察下图,在中,,,则可得到,由此得出推论2.

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

接下来讲如何利用来任意等分一条线段.

例 已知:如图,线段.

求作:线段的五等分点.

作法:①作射线.

②在射线上以任意长顺次截取.

③连结.

④过点.、、分别作的平行线、、、,分别交于点、、、.

、、、就是所求的五等分点.

(说明略,由学生口述即可)

【总结、扩展】

小结:

(l)及推论.

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

(4)应用定理任意等分一条线段.

八、布置作业 

教材P188中A组2、9

九、板书设计 

十、随堂练习

教材P182中1、2

平行线等分线段定理篇6

平行线等分线段定理

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

2.平行线等分线段定理的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”.

推论的用途:(1)平分已知线段;(2)证明线段的倍分.

重难点分析

本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.

教法建议

平行线等分线段定理的引入

生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业本、栅栏、等等;

②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论.

教学设计示例

一、教学目标

1.使学生掌握平行线等分线段定理及推论.

2.能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力.

3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

4.通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1.教学重点:平行线等分线段定理

2.教学难点:平行线等分线段定理

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤

【复习提问】

1.什么叫平行线?平行线有什么性质.

2.什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

平行线等分线段定理篇7

教学建议

1.平行线等分线段定理

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

2.平行线等分线段定理的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”.

推论的用途:(1)平分已知线段;(2)证明线段的倍分.

重难点分析

本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.

教法建议

平行线等分线段定理的引入

生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业 本、栅栏、等等;

②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论.

教学设计示例

一、教学目标 

1.使学生掌握平行线等分线段定理及推论.

2.能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力.

3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

4.通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1.教学重点:平行线等分线段定理

2.教学难点 :平行线等分线段定理

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤 

【复习提问】

1.什么叫平行线?平行线有什么性质.

2.什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

已知:如图,直线,.

求证:.

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

证明:过点作分别交、于点、,得和,如图.

∵,

又∵,,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

再引导学生观察下图,在中,,,则可得到,由此得出推论2.

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

接下来讲如何利用平行线等分线段定理来任意等分一条线段.

例 已知:如图,线段.

求作:线段的五等分点.

作法:①作射线.

②在射线上以任意长顺次截取.

③连结.

④过点.、、分别作的平行线、、、,分别交于点、、、.

、、、就是所求的五等分点.

(说明略,由学生口述即可)

【总结、扩展】

小结:

(l)平行线等分线段定理及推论.

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

(4)应用定理任意等分一条线段.

八、布置作业 

教材P188中A组2、9

九、板书设计 

平行线等分线段定理(精选7篇).docx

将本文的Word文档下载到电脑保存

推荐等级

相关内容

  • 《认识物体》教学设计(通用5篇)

    《认识物体》教学设计篇1一、分类、揭示物体名称。师:上课,同学们好。师:小朋友们你们喜欢看动画片吗?今天哪,老师给...

  • 《菱形》教案(精选4篇)

    《菱形》教案篇1教学建议知识结构重难点分析本节的重点是菱形的性质和判定定理。菱形是在平行四边形的前提下定义的,首先她...

  • 《复式条形统计图》教案(精选15篇)

    《复式条形统计图》教案篇1教学目标:知识与技能:理解并掌握复式条形统计图的另一种绘制方法,培养学生的动手实践能力.学会...

  • 《复式条形统计图》教学设计(通用17篇)

    《复式条形统计图》教学设计篇1教学内容:北师大版数学六年级上册,第五单元第一课《复式条形统计图》。教学目标:知识与...

  • 《对称图形》教案(精选4篇)

    《对称图形》教案篇1教学目标:1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形...

  • 《丑小鸭》教案(精选18篇)

    《丑小鸭》教案篇1【课前透视】《丑小鸭》是根据安徒生作品改写的一篇拟人体童话。文章以充满情趣的语言,生动引人的情节...

  • 《连 减》教学设计(精选3篇)

    《连减》教学设计篇1教学内容:小学二年级数学上册26—27页例1、例2教学目标:1、使学生掌握用竖式计算连加、连减的方法和...

  • 《对称图形》教学设计(精选5篇)

    《对称图形》教学设计篇1对称图形教学设计教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中...

  • 《丑小鸭》教学设计(精选22篇)

    《丑小鸭》教学设计篇1【分析教材】《丑小鸭》这篇课文是根据著名童话作家安徒生的《丑小鸭》改编的,故事中的丑小鸭是一...

  • 《旋转》教案(通用8篇)

    《旋转》教案篇1教学内容:苏教版第六册第24—26页。教学目标:1、通过观察生活图片,初步感知平移和旋转现象,并能在方格...

  • 《确定起跑线》教案(精选7篇)

    《确定起跑线》教案篇1设计理念:1、尽可能向学生提供现实的素材,让学生感受和学习“现实中的数学”。2、创设开放的问题情...

  • 《旋转》教学设计(精选9篇)

    《旋转》教学设计篇1一、复习旧知。1、出示指针旋转的过程,唤起学生对旋转的记忆。师:(出示课件:钟面模型)分针从12转...

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号