教学目标
(1)使学生正确理解的意义,正确区分排列、问题;
(2)使学生掌握数的计算公式、数的性质用数与排列数之间的关系;
(3)通过学习知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
(4)通过对排列、问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。
教学建议
一、知识结构二、重点难点分析本小节的重点是的定义、数及数的公式,数的性质。难点是解的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决应用题当中。与数,也有上面类似的关系。从n个不同元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个。所有这些不同的的个数叫做数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个,而这种集合的个数,就是相应的数。解排列应用题时主要应抓住是排列问题还是问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序),加乘明确(分类为加、分步为乘).三、教法设计1.对于基础较好的学生,建议把排列与的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系.2.学生与老师可以合编一些排列问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是问题.这样既调动了学生学习的积极性,又在编题辨题中澄清了概念.为了理解排列与的概念,建议大家学会画排列与的树图.如,从a,b,c,d4个元素中取出3个元素的排列树图与树图分别为:排列树图
由排列树图得到,从a,b,c,d取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.树图由树图可得,从a,b,c,d中取出3个元素的有4个,它们是(abc),(abd),(acd),(bcd).从以上两组树图清楚的告诉我们,排列树图是对称的,图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样就有了自己的树图.学会画树图,不仅有利于理解排列与的概念,还有助于推导数的计算公式.3.排列的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或问题,最后在设及排列与的综合问题.对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播.对于排列、应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择最佳方案,总结解题规律.对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高.4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的及每次取出1个元素的分别是这就说明从4个不同的元素里每次取出3个元素的与从4个元素里每次取出1个元素的是—一对应的.对定理2,可启发学生从下面问题的讨论得出.从n个不同元素,,…,里每次取出m个不同的元素(),问:(1)可以组成多少个;(2)在这些里,有多少个是不含有的;(3)在这些里,有多少个是含有的;(4)从上面的结果,可以得出一个怎样的公式.在此基础上引出定理2.对于,和一样,是一种规定.而学生常常误以为是推算出来的,因此,教学时要讲清楚. 教学设计示例教学目标 (1)使学生正确理解的意义,正确区分排列、问题;(2)使学生掌握数的计算公式;(3)通过学习知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;教学重点难点重点是的定义、数及数的公式;难点是解的应用题.教学过程 设计(-)导入 新课(教师活动)提出下列思考问题,打出字幕.[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是问题?(学生活动)讨论并回答.答案提示:(1)排列;(2).[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于问题.这节课着重研究问题.设计意图:与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.(二)新课讲授[提出问题创设情境]