更新时间:2025-08-12 11:34:15
(1)学习目标:①熟悉椭圆的几何性质(对称性,范围,顶点,离心率)②理解离心率的大小对椭圆形状的影响③能利用椭圆的几何性质求椭圆的标准方程知识要点:方程图形范围-a≤x≤a,-b≤y≤b-b≤x≤b,-a≤y≤a对称性关于x轴,y轴,原点关于x轴,y轴,原点顶点a1(-a,0)a2(a,0)b1(0,-b)b2(0,b)a1(0,-a)a2(0,a)b1(-b,0)b2(b,0)离心率e= [导学提示]1、试完成下列几题: (1)请同学们通过看书说明椭圆的几何性质有哪些?(2)通过说明椭离心率与椭圆形状的关系。(3)请同学说出椭圆的标准方程与圆的标准方程的区别。[课堂指导]1、 总结:椭圆的几何性质并说明椭圆的离心率与椭圆形状的关系。2、椭圆何性质的应用(例题精讲)例1.求椭圆16x2+25y2=400的长轴和短轴的长,离心率,焦点和顶点坐标,并用描点法画出它的图形. 例2.求适合下列条件的椭圆的标准方程:①经过点p(-3,0),q(0,-2);②长轴的长等于20,离心率等于 aboxy例3.如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)f2为一个焦点的椭圆.已知它的近地点a(离地面最近的点)距地面439km,远地点b(离地面最远的点)距地面2384km,并且f2、a、b在同一条直线上,地球半径约为6371km,求卫星运行的轨迹方程(精确到1km). [随堂训练]1.求适合下列条件的椭圆的标准方程①a=6,焦点在x轴上;②c=3,,焦点在y轴上. 2.下列各组椭圆中,哪一个更接近于圆?①9x2+y2=36与 ②x2+9y2=36与3.椭圆与的关系为 ( )a.有相同的长、短轴 b.有相等的焦距 c.有相同的焦点 d.以上均不对4.中心在原点,焦点在x轴上,若长轴为18,且两个焦点恰好将长轴三等分,则其方程为 ( )a. b. c. d.[课后扩展]1.椭圆的一焦点与长轴较接近端点的距离为,焦点与短轴两端点的连线互相垂直,求椭圆的方程. 2.已知椭圆在x轴,y轴正半轴上的两顶点分别为a、b,原点到直线ab的距离等于,又该椭圆离心率,求其方程.
将本文的Word文档下载到电脑保存
推荐等级教材:北师大义务教育课程标准教科书七年级一册(P89--93)一、知识与能力目标:1、经历探索规律并用代数式表示规律的过程...
教学目的: 1、使学生初步掌握长方形、正方形的基本特征,会在方格纸上画长方形和正方形。 2、初步认识平行四边形...
一、教学目标 :经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活...
背景介绍本学期,我们二中八年级的数学老师在渤海大学范文贵老师的指导下进行了一些教学上的改革尝试。范老师现正在华东师...
一、相关背景介绍建构主义理论告诉我们,学习是学生在原有认知经验基础上主动建构新知识的过程。这一建构过程实际上需要学...
“生成”是新课程倡导的一个重要教学理念。“生成”对应于“预设”。传统的课堂教学,常常只有预设而不见生成。教师期望...
教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意...
教学目标 (1)熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断.(2)理解一条直线到另一条直线的角的概念...
教学目标 (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练...
教学目标 (1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都...
教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法;(...
教学目标 (1)能熟练运用不等式的基本性质来解不等式;(2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号