多学习 > 教案下载 > 数学教案 > 初中数学教案 > 九年级数学教案 > 22.2.1 直接开平方法(精选4篇)

22.2.1 直接开平方法(精选4篇)

更新时间:2025-08-12 11:34:15

22.2.1直接开平方法篇1

教学内容

运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.

教学目标

理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

重难点关键

1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.

2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

教学过程

一、复习引入

学生活动:请同学们完成下列各题

问题1.填空

(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.

问题2.如图,在△abc中,∠b=90°,点p从点b开始,沿ab边向点b以1cm/s的速度移动,点q从点b开始,沿bc边向点c以2cm/s的速度移动,如果ab=6cm,bc=12cm,p、q都从b点同时出发,几秒后△pbq的面积等于8cm2?

老师点评:

问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .

问题2:设x秒后△pbq的面积等于8cm2

则pb=x,bq=2x

依题意,得:x·2x=8

x2=8

根据平方根的意义,得x=±2

即x1=2,x2=-2

可以验证,2和-2都是方程x·2x=8的两根,但是移动时间不能是负值.

所以2秒后△pbq的面积等于8cm2.

二、探索新知

上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=±2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±2

即2t+1=2,2t+1=-2

方程的两根为t1=-,t2=--

例1:解方程:x2+4x+4=1

分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

解:由已知,得:(x+2)2=1

直接开平方,得:x+2=±1

即x+2=1,x+2=-1

所以,方程的两根x1=-1,x2=-3

例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=14.4

(1+x)2=1.44

直接开平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

三、应用拓展

例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?

分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.

解:设该公司二、三月份营业额平均增长率为x.

那么1+(1+x)+(1+x)2=3.31

把(1+x)当成一个数,配方得:

(1+x+)2=2.56,即(x+)2=2.56

x+=±1.6,即x+=1.6,x+=-1.6

方程的根为x1=10%,x2=-3.1

因为增长率为正数,

所以该公司二、三月份营业额平均增长率为10%.

四、归纳小结

本节课应掌握:

由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.

五、作业:

一、选择题

1.若x2-4x+p=(x+q)2,那么p、q的值分别是( ).

a.p=4,q=2    b.p=4,q=-2    c.p=-4,q=2   d.p=-4,q=-2

2.方程3x2+9=0的根为( ).

a.3     b.-3     c.±3    d.无实数根

3.用配方法解方程x2-x+1=0正确的解法是( ).

a.(x-)2=,x=±

b.(x-)2=-,原方程无解

c.(x-)2=,x1=+,x2=

d.(x-)2=1,x1=,x2=-

二、填空题

1.若8x2-16=0,则x的值是_________.

2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.

3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______.

三、综合提高题

1.解关于x的方程(x+m)2=n.

2.某农场要建一个长方形的养鸡场,鸡场的一边*墙(墙长25m),另三边用木栏围成,木栏长40m.

(1)鸡场的面积能达到180m2吗?能达到200m吗?

(2)鸡场的面积能达到210m2吗?

3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗?

答案:

   一、1.b 2.d 3.b

二、1.± 2.9或-3 3.-8

三、

1.当n≥0时,x+m=±,x1=-m,x2=--m.当n<0时,无解

2.

(1)都能达到.设宽为x,则长为40-2x,

依题意,得:x(40-2x)=180    

整理,得:x2-20x+90=0,x1=10+,x2=10-;

同理x(40-2x)=200,x1=x2=10,长为40-20=20.

(2)不能达到.同理x(40-2x)=210,x2-20x+105=0,

b2-4ac=400-410=-10<0,无解,即不能达到.

3.因要制矩形方框,面积尽可能大,所以,应是正方形,即每边长为1米的正方形.

22.2.1直接开平方法篇2

教学目标

1.理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

2.知道形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解.培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

3.鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略.

教学重点及难点

1、用直接开平方法解一元二次方程;

2、理解直接开平方法中的整体思想,懂得(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解

教学过程设计

一、情景引入,理解方法

看一看:特殊奥林匹克运动会的会标

想一想:

在XX年的特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,xx学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

解:由题意得:x2=144

根据平方根的意义得:x=±12

∴原方程的解是:x1=12,x2=-12

∵边长不能为负数

∴x=12

了解方法:

上述解方程的方法叫做直接开平方法.通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法.

【说明】用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括.通过两个阶段联系后的探究意在培养学生探究一般规律的能力..

第三阶段:怎样解方程(1+x)2=144?

请四人学习小组共同研究,并给出一个解题过程.可以参考课本或其他资料.小组长负责清楚的记录解题过程.

第四阶段:众人齐心当考官!

请各四人小组试着编一个类似于(x+1)2=144这样能用直接开平方法解的一元二次方程.

1、分析学生所编的方程.

2、从学生的编题中挑出一个方程给学生练习.

3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

4(x+1)2-144=0

归纳:形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解.

【说明】在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想.

三、巩固方法,提高能力

请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

⑴ x2=3             ⑵ 3t2-t=0

⑶ 3y2=27           ⑷ (y-1)2-4=0

⑸ (2x+3)2=6        ⑹ x2=36x

四、自主小结

今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

22.2.1直接开平方法篇3

直接开平方法

理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

重点

运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.

难点

通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

一、复习引入

学生活动:请同学们完成下列各题.

问题1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

二、探索新知

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

(学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接开平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的两根x1=-3+2,x2=-3-2

解:略.

例2市政府计划2年内将人均住房面积由现在的10m2提高到14.4m2,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=14.4

(1+x)2=1.44

直接开平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

三、巩固练习

教材第6页练习.

四、课堂小结

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.

五、作业布置

22.2.1直接开平方法篇4

[课   题] §12.2 一元二次方程的解法(1)——直接开平方法[教学目的] 使学生掌握直接开平方法,并会解某些一元二次方程;使学生会解(x-a)2=b(b≥0)型的方程,为进一步学习公式法作好准备。[教学重点] 掌握直接开平方法,并会解某些一元二次方程。[教学难点 ] 会解(x-a)2=b(b≥0)型的方程。[教学关键] 会解(x-a)2=b(b≥0)型的方程,为进一步学习公式法作好准备。[教学用具] [教学形式] 讲练结合法。[教学用时] 45′×1 [教学过程 ][复习提问1、什么叫做整式方程?(方程两边都是关于未知数的整式,叫做整式方程。)2、什么样的方程叫做一元一次方程?什么样的方程叫做一元二次方程?(在整式方程中,只含一个未知数,并且未知数的最高次数是1,这样的方程叫做一元一次方程;在整式方程中,只含一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程。)3、说明一元一次方程与一元二次方程的相同点和不同点?(都是整式方程,并且都含有一个未知数,这是它们的相同点;它们的不同点是未知数的次数,一个是一次,一个是二次。)4、一元二次方程的一般形式是什么?其中a应具备什么条件?(一元二次方程的一般形式是:ax2+bx+c=0,其中a应不等于零。因为a=0,则方程ax2+bx+c=0就不是一元二次方程了。)5、x2-4=0是一元二次方程吗?其中二次项的系数、一次项的系数、常数项各是什么?(是。二次项系数是1、一次项系数是0、常数项是-4。)[讲解新课]我们来解方程:x2-4=0。先移项,得:x2=4。(这里,一个数x的平方等于4,这个数x叫做4的什么?——这个数x叫做4的平方根或二次方根;一个正数有几个平方根?——一个正数有两个平方根,它们互为相反数;求一个数的平方根的运算叫做什么?——叫做开平方。)上面的x2=4,实际上就是求4的平方根。因此,x=±即,x1=2,x2=-2。讲(或提问)到此,指出:这种解某些一元二次方程的方法叫做直接开平方法。提问:用直接开平方法解下列方程:1、x2-144=0;          2、x2-3=0;3、x2+16=0;            4、x2=0。(1、x1=12,x2=-12;2、x1=,x2=-;3、无解——负数没有平方根;4、x=0——0有一个平方根,它是0本身)。2 解方程:(x+3)2=2。说明与分析:此例要求解出方程的根,同时通过此例的学习也为进一步解公式法作准备。实际上,我们将用此例以及类似的题目推导出一元二次方程的另一解法——配方法。可以看出,原方程中x+3是2的平方根,解:x+3=±即:x1=-3+,或x2=-3-。∴ x1=-3+,x2=-3-。提问:解下列方程:1、(x+4)2=3;       2、(3x+1)2=-3。(1、x1=-4+,x2=-4-。2、无解。)[课堂练习]教科书第7页练习1,2题。[课堂小结]直接开平方法可解下列类型的一元二次方程:x2=b(b≥0);(x-a)2=b(b≥0)。根据平方根的定义,要特别注意:由于负数没有平方根,所以,上列两式中的b≥0,当b<0时,方程无解。[课外作业 ]教科书第15习题12.1A组第1,2题。对学有余力的学生可做B组第1题。 [板书设计 ]课题:      例题:辅助板书: [课后记]

通过本节课的学习,学生已掌握了一元二次方程的解法之一——直接开平方法,并能熟练地求出能应用直接开平方法解的一元二次方程的两个根,同时掌握了一元二次方程的解题步骤及书写格式。

22.2.1 直接开平方法(精选4篇).docx

将本文的Word文档下载到电脑保存

推荐等级

相关内容

  • 22.2.3 公式法(通用15篇)

    22.2.3公式法篇1教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标理解一...

  • 22.2.5 因式分解法(精选2篇)

    22.2.5因式分解法篇1教学内容用因式分解法解一元二次方程.教学目标掌握用因式分解法解一元二次方程.通过复习用配方法、公...

  • 函数的图象(精选14篇)

    函数的图象篇1一、教学目的1.使学生进一步理解自变量的取值范围和函数值的意义.2.使学生会用描点法画出简单函数的图象.二...

  • 一元二次方程的应用(精选16篇)

    一元二次方程的应用篇1第一课时一、教学目标 1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。2.通过列...

  • 2.3 平行线特征(通用2篇)

    2.3平行线特征篇1§2.3平行线特征教学目标 1.平行线的性质;2.运用这些性质进行简单的推理或计算;3.经历观察﹑操作﹑推理...

  • 4.4一元一次方程的应用(精选14篇)

    4.4一元一次方程的应用篇15.3 用方程解决问题(2)--打折销售 学习目标:1、进一步经历运用方程解决实际问题的过程...

  • 近似数(通用17篇)

    近似数篇1教学设计示例 一、素质教育目标 (一)知识教学点 1.使学生理解和有效数字的意义 2.给一个,能说出它精确到哪一...

  • 12.1 一元二次方程(精选14篇)

    12.1一元二次方程篇1教学目的1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成...

  • 相似图形(精选2篇)

    相似图形篇1教学交流课教案: 第四章教学目标 :1、知道线段比的概念。2、会求两条线段的比。3、通过有关比例尺的计算,让...

  • 二元一次方程(精选16篇)

    二元一次方程篇1§11.1【教学目标 】【知识目标】了解、组及其解等有关概念,并会判断一组数是不是某个组的解。【能力目标...

  • 平均数教案(精选15篇)

    平均数教案篇1导学内容:人教版小学数学教材第90~91页的例1、例2及相关内容。导学目标:1.使学生理解平均数的含义,初步...

  • 《中位线》教案(精选6篇)

    《中位线》教案篇1教学过程一、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边...

热门分类

推荐阅读

关于我们|免责声明|隐私政策|帮助中心|网站地图|联系我们

Copyright © 2025 Duoxuexi.Com All Rights Reserved.

多学习 版权所有 粤ICP备20068283号