更新时间:2025-08-12 11:26:05
教材分析
《勾股定理》是人教版新课标八年级数学第十八章第一节第一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。
教学目标
根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。
知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法。能够灵活地运用勾股定理及其计算。
过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。培养学生观察、比较、分析、推理的能力。
情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感在探索问题的过程中,培养学生的合作交流意识和探索精神。
(三)本节课的重点:是勾股定理的发现、验证和应用。
难点:是用拼图方法、面积法证明勾股定理
教法和学法
教法指导:
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程,针对八年级学生的知识结构和心理特征,本节课采取自主探究发现式教学,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。使学生得到获得新知的成功感受,从而激发学生钻研新知。并利用教具与多媒体进行教学。
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导,我采用了如下的学法指导:
学法指导:
在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
通过以上的教材分析,教法和学法的指导,相信大家已建立起本节课的知识框架,下面就来看以下本节课的教学过程设计:
教学过程设计:
根据学生的认知规律和学习心理,对于本节课的教学过程,我设计了如下的教学流程图:
一、读一读,引入勾股定理
二、议一议,探索勾股定理
三、拼一拼,验证勾股定理
四、练一练,应用勾股定理
五、谈一谈,总结勾股定理
一、读一读,引入勾股定理
首先,出示两幅图片,第一幅图片配上文字说明(引出勾股定理这一课题)。简单介绍勾股定理的历史,图片不仅给学生带来美感,也激发他们的学习兴趣,产生学习的渴望,振奋精神投入到课堂之中。第二幅图片为XX年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。在学生倾听历史,欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。
二、议一议,探索勾股定理
接着讲述毕达哥拉斯到朋友家做客的故事,通过讲述毕达哥拉斯的故事来进一步激发学生的学习兴趣,使学生在不知不觉中进入探究学习的最佳状态。然后提出三个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。问题一:在图中你能发现那些基本图形?同学可以发现等腰直角三角形。问题二:与等腰直角三角形相邻的正方形面积之间有怎样的关系?同学通过直接数等腰直角三角形的个数可以得出a的面积加上b的面积等于c的面积。从而得到。紧接着抛出第三个问题:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?同学可以很快得出:等腰直角三角形两直角边的平方和等于斜边的平方。“问题是思维的起点”,通过层层设问,引导学生发现新知。等腰直角三角形三边具有这样的特殊关系,那么一般的直角三角形呢?最后探索出勾股定理。
3、拼一拼,验证勾股定理
教师引导学生按照要求进行拼图,观察并分析;这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难,此时,老师发放勾股定理拼图模具,让同学试试看,能不能仿照上面的例子,利用手中的纸质模具拼一拼,拼出一个规则图形,使得它的面积能用两种不同的方法表示。当学生利用纸质模具拼出之后,进行拼图,此时可以进行分组合作互相协助。相信同学在老师的指导和互相帮助之下,可以很快的拼出赵爽弦图和毕达哥拉斯用来证明勾股定理的图形。通过这些实际操作,学生能够进一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备,给学生充分的时间和空间参与到数学活动中来,并发挥他们的主观能动性,可以进一步提高学生的学习兴趣。利用分组讨论,加强学生的合作意识。
4、练一练,应用勾股定理
在这一环节,我设置了分组打擂,闯关的游戏,采取小组内合作交流,小组间公平竞争的方式,小组的成果在全班展示,有一人代表小组到台前展示、板演、说明。师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
5、谈一谈,总结勾股定理
让学生谈谈这节课的收获是什么,让学生畅所欲言,通过小结,培养学生的归纳概括能力。引导学生对知识要点进行总结,梳理学习思路。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
六、静一静,欣赏勾股定理
让学生从这组图片当中进一步感受勾股定理神奇、美妙、美丽,课堂教学中动静结合,以免引起学生的疲劳。
七、分层作业,巩固创新
针对学生认知的差异设计有层次的作业,既能巩固知识,有使学有余力的学生获得最佳发展。
本课意在创设愉悦和谐的乐学气氛,我始终面向全体学生,突出了学生的自主探究与合作交流,体现了学生的主体地位.让全体学生都能积极主动地参与教学活动.预设是生成的基础,通过我课前充分的预设,这节课收到了预期的效果。
说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、|板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。以下是小编整理的初中数学《勾股定理的逆定理》说课稿,欢迎大家阅读参考。
一、教材分析:
(一)、本节课在教材中的地位作用
“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。
(二)、教学目标:
根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:
1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形
过程与方法:
1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程
2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:
1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的`和谐及辩证统一的关系
2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神
(三)、学情分析:
尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用
难点:勾股定理逆定理的证明
关键:辅助线的添法探索
二、教学过程:
本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。
(二)、创设问题情境
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。
(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)
因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。
(四)、组织变式训练
本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。
(五)、归纳小结,纳入知识体系
本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。
(六)、作业布置
由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。
三、说教法、学法与教学手段
为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。
此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。
总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。
一、教材分析
1.教材的地位和作用
它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。
因此他的教育教学价值就具体体现在如下三维目标中:
知识与技能:
1、经历勾股定理的探索过程,体会数形结合思想。
2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的实际问题。
过程与方法:
1、经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。
2、在观察、猜想、归纳、验证等过程中培养学生们的数学语言表达能力和初步的逻辑推理能力。
情感、态度与价值观:
1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。
2、在探究活动中,体验解决问题方法的多样性,培养学生们的合作意识和然所精神。
3、让学生们通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。
由于八年级的学生们具有一定分析能力,但活动经验不足,所以
本节课教学重点:勾股定理的探索过程,并掌握和运用它。
教学难点:分割,补全法证面积相等,探索勾股定理。
二.。教法学法分析:
要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:
先从学生们熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生们在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生们自己的课堂。
学法:我想通过“操作+思考”这样方式,有效地让学生们在动手、动脑、自主探究与合作交流中来发现新知,同时让学生们感悟到:学习任何知识的最好方法就是自己去探究。
三、教学程序设计
1、故事引入新课,激起学生们学习兴趣。
牛顿,瓦特的故事,让学生们科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的';生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。
2、探索新知
在这里我设计了四个内容:
①探索等腰直角三角形三边的关系
②边长为3、4、5为边长的直角三角形的三边关系
③学生们画两直角边为2,6的直角三角形,探索三边的关系
④三边为a、b、c的直角三角形的三边的关系,(证明)
⑤勾股定理历史介绍,让学生们体会勾股定理的文化价值。
体现从特殊到一般的发现问题的过程。
3、新知运用:
①举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)
②在直角三角形中,已知∠B=90°,AB=6,BC=8,求AC.
③要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做?
④如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.
4、小结本课:
学完了这节课,你有什么收获?
老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。
一、说教材分析
1.教材的地位和作用
华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。
因此他的教育教学价值就具体体现在如下三维目标中:
知识与技能:
1、经历勾股定理的探索过程,体会数形结合思想。
2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的实际问题。
过程与方法:
1、经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。
2、在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力。
情感、态度与价值观:
1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。
2、在探究活动中,体验解决问题方法的多样性,培养学生的合作意识和然所精神。
3、让学生通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。
由于八年级的学生具有一定分析能力,但活动经验不足,所以
本节课教学重点:勾股定理的探索过程,并掌握和运用它。
教学难点:分割,补全法证面积相等,探索勾股定理。
二、说教法学法分析:
要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:
先从学生熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生自己的课堂。
学法:我想通过“操作+思考”这样方式,有效地让学生在动手、动脑、自主探究与合作交流中来发现新知,同时让学生感悟到:学习任何知识的最好方法就是自己去探究。
三、说教学程序设计
1、故事引入新课,激起学生学习兴趣。
牛顿,瓦特的故事,让学生科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。
2、探索新知
在这里我设计了四个内容:
①探索等腰直角三角形三边的关系
②边长为3、4、5为边长的直角三角形的三边关系
③学生画两直角边为2,6的直角三角形,探索三边的关系
④三边为a、b、c的直角三角形的三边的关系,(证明)
⑤勾股定理历史介绍,让学生体会勾股定理的文化价值。
体现从特殊到一般的发现问题的过程。
3、新知运用:
①举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)
②在直角三角形中,已知∠B=90°,AB=6,BC=8,求AC.
③要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做?
④如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.
4、小结本课:
学完了这节课,你有什么收获?
老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的`,我们要多思考。勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。
反思:
教学设计主要是体现从特殊到一般的知识形成过程,探索问题的设计上有点难,第二个问题应加个3,3为直角边的等腰直角三角形让学生分割或者补全,这样过度,降低3,4为直角边的探索探索;在2,6为直角边时,这个问题可以不用设计进去,就为后面的练习留足时间。探索时间较长,整个课程推行进度较慢,练习较少。
对学生的启发不够,对学生的关注不够,学生对问题的思考不能及时想出来,没有及时很好的引导,启发,应让学生多一些思考的空间,并及时交给思考的方法。学生反应不是太好,能力差,也或许是因为问题设计的较难,没有很好的体现出探究。
预期的目标没有很好的达成,学生虽然掌握了勾股定理,但探索热情没有点燃,思维能力,动手能力,探索精神没有很好的得到发展。
勾股定理就是继续学习的一个直角三角形的判断定理,下面就是小编整理的勾股定理说课稿苏教版,欢迎来参考!
一、教材分析
勾股定理就是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它就是直角三角形的一条非常重要的性质,就是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,就是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的证明。
二、教法和学法
教法和学法就是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾就是3,股就是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、就是不就是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难讨论归纳
1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?就是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:
(一)教材的地位与作用
从知识结构上看百度一下,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具备相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引领学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析
教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引领学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程
我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风
给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步追溯历史解密真相
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具备局限性。因此教师应引领学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面“勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法,“补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。
以上三个环节层层深入步步引领,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
第三步推陈出新借古鼎新
教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引领者与合作者”这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。
教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。
第四步取其精华古为今用
我按照“理解—掌握—运用”的梯度设计了如下三组习题。
(1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用
第五步温故反思任务后延
在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
四、教学评价
在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。
五、设计说明
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。
尊敬的各位评委:
您们好!我来自明光市张八岭中学。今天我说课的课题是《勾股定理》。本课选自九年义务教育沪科版八年级下册初中数学第十九章第一节的第一课时。
下面我从教学背景分析、教材处理、教学策略、教学流程方面对本课的设计进行说明。
一、教学背景分析
1、教材分析
本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过一枚1955年由希腊发行的邮票上图案的故事,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,同时在实际生活中用途也很大。勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。
2、学情分析
学生已经学习了有关三角形的一些知识,如三角形的三边不等关系,三角形全等的判定等。也学过不少利用图形面积来探求数式运算规律的例子,如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等。在学生这些原有的认知水平基础上,探求直角三角形的又一重要性质——勾股定理。让学生的知识形成知识链,让学生已具有的数学思维能力得以充分发挥和发展。
3、教学目标:
根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:
知识与技能:了解勾股定理的'发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.
过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
情感态度价值观:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。
4、教学重点、难点
通过研究分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。因此我确定本课的教学重点为勾股定理的证明与运用,教学难点为用面积法证明勾股定理
二、教材处理
根据学生情况,为有效培养学生能力,在教学过程中,我先以数学史中的一个有趣的故事来激发学生学习兴趣,运用直观教具、多媒体等手段,调动学生学习积极性,并开展以探究活动为主的教学模式,边设疑,边讲解,边操作,边讨论,启发学生提出问题,分析问题,进而解决问题,以达到突出重点,攻破难点的目的。
三、教学策略
1、教法
“教必有法,而教无定法”,只有方法恰当,才会有效。根据本课内容特点和八年级学生思维活动特点,我采用了引导发现教学法,合作探究教学法,逐步渗透教学法和师生共研相结合的方法。
2、学法
“授人以鱼,不如授人以渔”,通过设计问题序列,引导学生主动探究新知,合作交流,体现学习的自主性,从不同层次发掘不同学生的不同能力,从而达到发展学生思维能力的目的,发掘学生的创新精神。
3、教学手段
充分利用多媒体,提高教学效率,增大教学容量;通过多媒体演示,激发学生学习兴趣,启迪学生思维的发展;通过直观教具,进行动手操作,调动学生学习的积极性,培养学生思维的广阔性。
4、教学模式
根据新课标要求,要积极倡导自主、合作、探究的学习方式,我采用了创设情境——探究新知——反馈训练的教学模式,使学生获取知识,提高素质能力。
四、教学流程
(一)创设情境,引入新课(时长2~3分钟)
我利用多媒体课件,给学生展示一枚1955年由希腊发行的邮票,并问学生是否想听这枚邮票背后的故事?
在20xx多年前,古希腊有一位著名的数学家——毕达哥拉斯,有次参加一位政要人物邀请的餐会,这位主人的宫殿般豪华的餐厅铺着正方形的美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言,但这位善于观察和理解的数学家却凝视脚下这些排列规则,美丽的方形瓷砖,毕达哥拉斯不只是欣赏瓷砖的美丽,而是想到它们和“数”之间的关系,于是他拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线为边画了一个大正方形,同学们,你们知道他发现了什么吗?
对学生的回答进行引导,梳理,总结,可以得到有关三个正方形面积的结论。进而引入本节课的标题:19.1勾股定理(板书)
(以小故事激发学生的兴趣,随后以开放式的问题形式,让学生观察猜想。本环节体现了人文关怀,并兼顾了教材中的探究,为下一步勾股定理的证明埋下伏笔。)
(二)引导学生,探究新知(教学时长15~20分钟)
1、初步感知定理:
(1)用什么方法来探求:勾股定理即直角三角形三边数量关系呢?
回忆我们曾经利用图形面积探索过数学公式,大家还记得在哪用过吗?
(学生讨论)
课件展示:平方差公式、完全平方公式、单项式乘多项式、多项式乘多项式的引出.
今天,让我们试一试通过计算图形的面积能不能得到直角三角形三边数量关系.(从学生已有的学习经验出发,将探求边长之间的关系转化为探求面积之间的关系,让学生觉得解决今天问题的方法并不陌生,增强探索问题的信心.)
(2)展示课本上图19—1和图19—2(1)的图形,观察图中三个正方形有什么关系?
让学生通过观察,计算出三个正方形的面积可以发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AB。
(这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。)
(3)紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出图19.2(2)(一般直角三角形)。学生可以同样求出两个小正方形面积,只是求大正方形的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。
给出书中的定理(板书)并用弯曲的手臂形象地表示勾、股、弦的概念,板书勾股定理,进而给出字母表达式.
通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。
2、证明结论(教学时长8~10分钟):
出示书中图19—3,与学生共同分析证明并板书过程。通过给出定理的证明过程让学生体会到数学知识从特殊性到一般性,并对一般性结论进行论证的严谨性。
3、勾股定理简介:(教学时长1~2分钟)
借助多媒体课件,通过介绍古代在勾股定理研究方面取得的成就,感受数学文化,激发学生学习的热情,体会古人伟大的智慧。
(三)反馈训练,巩固新知(教学时长6~8分钟)
让学生完成两项任务:
任务一:教材练习第一题;
任务二:1,Rt?ABC中,c为斜边,a=3,b=4.,则c=?
2,?ABC中c为最长边,a=3,b=4,则c=?
任务一和任务二中第一题都是基础题,对于任务二中第二题是提高题,对于做错的学生进行引导让其思考,再告知错误的原因。通过练习,让学生更好的体会到,勾股定理揭示的是直角三角形三边之间的数量关系,让学生能够更好的将数与形紧密联系起来进行思考。
(四)归纳小结,深化新知(教学时长1~2分钟)
本节课你有哪些收获?你最感兴趣的地方是什么?你想进一步研究的的问题是什么???
通过小结,使学生进一步明确掌握教学目标,使知识成为体系。
(五)布置作业,拓展新知(教学时长1~2分钟)
让学生收集有关勾股定理的证明方法,下节课展示、交流.使本节知识得到拓展、延伸,培养了学生能力和思维的深刻性,让学生感受数学深厚的文化底蕴。
(六)板书设计,明确新知
本节课的板书设计,它分为三块:一块是复习引入,一块是勾股定理;一块是例题解析。它突出了重点,层次清楚,便于学生掌握,为获得知识服务。
以上内容,我仅从教学背景分析、教材处理、教学策略、教学流程方面说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!
一、教材分析
(一)教材所处的地位
这节课是华师大九年制义务教育课程标准实验教科书八年级总第19章第2节探索勾股定理,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析
教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计
(一)数学史导入
以毕达哥拉斯发现勾股定理引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。
(二)实验操作
1、投影课本图的有关直角三角形问题,让学生计算正方形a,b,c的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将c划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形a,b,c的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形c的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。
3、给出一个边长单位为5,12,13,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。
(三)归纳验证
1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。
2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过动手操作拼图来验证结论的正确性和广泛性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育和数学文化熏陶。
(四)问题解决
让学生解决生活中的实际问题,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。
(五)课堂小结
主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。
(六)布置作业
习题19.2(1-5)
有兴趣的同学可以查找另外的证明方法,写出1-2种出来
四、设计说明
1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的探索和研究,得出结论。这种一般化的思想方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。
3、关于练习的设计,除两个实际问题和课本习题以外,还让有兴趣的同学可以查找另外的证明方法,写出1-2种出来
4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学数学、用数学的意识是有很大的裨益的。
今天我说课的内容是《勾股定理的逆定理》。根据新课程标准,我将以教什么,怎么教,为什么这么教为思路开展我的说课,首先,我先来说说我对教材的理解。
教材分析是上好一堂课的前提条件,在上好一堂课之前,我首先谈一谈对教材的理解。
一、说教材
“勾股定理的逆定理”一节?是在上节“勾股定理”之后继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化。勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。
二、说学情
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。学生此前学习了三角形有关的知识,掌握了直角三角形的性质和勾股定理,学生在此基础上学习勾股定理的逆定理可以加深理解。
三、说教学目标
根据数学课标的要求和教材的具体内容结合学生实际我确定了如下教学目标。
【知识与技能】
理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。利用勾股定理的逆定理判定一个三角形是不是直角三角形。
【过程与方法】
通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
【情感态度与价值观】
通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
四、说教学重难点
重点:勾股定理逆定理的应用;
难点:探究勾股定理逆定理的证明过程。
五、说教学方法
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。基于此,我准备采用的教法是讲练结合法,小组讨论法。
六、说教学过程
(一)导入新课
在导入新课环节,我会采用温故知新的导入方法,先让学生回顾勾股定理有关知识,并引入本节课的课题——勾股定理逆定理。
【设计意图】通过复习回顾能很好地将新旧知识联系起来,使学生形成对知识的系统的认识。并且由旧知开始,能很好地帮助学生克服畏难情绪。
(二)探究新知
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题去提示本节课的探究宗旨,演示古代埃及人把一根长绳打上等距离的13个结,然后便得到一个直角三角形这是为什么?这个问题一出现,马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视激发了学生的兴趣,因而全身心地投入到学习中来创造了我要学的气氛,同时也说明了几何知识来源于实践不失时机地让学生感到数学就在身边。
因为几何来源于现实生活,对初二学生来说选择适当的时机让他们从个体实践经验中开始学习可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等顺利作出了辅助直角三角形,整个证明过程自然无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程。这样学生不是被动接受勾股定理的逆定理?因而使学生感到自然、亲切。学生的学习兴趣和学习积极性有所提高,使学生确实在学习过程中享受到自我创造的快乐。
在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍充分发挥教科书的作用养成学生看书的习惯这也是在培养学生的自学能力。
(三)巩固提高
本着由浅入深的原则安排了三个题目。演示第一题比较简单(判断下列三条线段组成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)让学生口答让所有的学生都能完成。
第二题则进了一层用字母代替了数字,绕了一个弯,既可以检查本课知识又可以提高灵活运用以往知识的能力。
思维提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈调节教法同时注意加强有针对性的个别指导把发展学生的思维和随时把握学生的学习效果结合起来。
(四)小结作业
在小结环节,我会随机询问学生勾股定理的逆定理是什么?如果判断一个三角形是不是直角三角形,以及勾股定理的逆定理的应用需要注意点什么等问题,先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法培养能力方面比如辅助线的添法。
设计意图:这样设计可以帮助学生以反思的形式回忆本节课所学的知识,加深对知识的印象,有利于学生良好的数学学习习惯的养成。
由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。第一组是基础题,我会用ppt出示关于勾股定理的逆定理的计算题目,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。第二组是开放性题目,让学生课后思考总结一下判定一个三角形是直角三角形的方法。
课题:勾股定理
内容:教材分析、教法学法分析、教学过程设计、设计说明
一、教材分析
(一)教材所处的地位
这节课是华师大九年制义务教育课程标准实验教科书八年级总第19章第2节探索勾股定理,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。
二
将本文的Word文档下载到电脑保存
推荐等级本文是第一范文网小编为大家整理的初中体育课田径教学说课稿:快速跑技术,希望对大家有所帮助。一、教材简析:快速跑是初...
各位领导,各位评委,各位老师:您们好!一。说教材:我说课的内容是川教版八年级历史上册第四学习主题的第16课:抗日战争...
各位评委老师,大家好!我说课的内容是七年级教科书第一册第二章第二节“数轴”的第一课时内容。我从以下几个方面对本节课...
各位评委老师,大家好!我今天说课的内容是文档编写工具,我从教材、教法、学法指导和教学过程四个方面对本课进行说明。一...
各位评委老师,大家好!我今天说课的内容是9BUnit4Reading,我从教材、教法、学法指导和教学过程四个方面对本课进行说明。...
各位评委老师,大家好!我今天说课的内容是人美版美术教材第15册第3课《墨与彩的韵味》,下面我就从教材分析、教法运用,学...
中国石拱桥说课稿一、说教材《中国石拱桥》选自人教版义务教育课程标准实验教科书八年级语文上册第三单元。这篇文章介绍了...
尊敬的各位评委大家好:我是号参赛选手,现在说课的题目是《唱脸谱》,此课选自人民音乐教育出版社出版的第五单元《京腔昆...
尊敬的各位老师大家好,我是xx中学的七年级教师张。今天我说课的题目是《河中石兽》。《河中石兽》是人教版七年级上册第五...
一、教学目标知识与技能目标:1.说明肾单位的各部分组成及作用。2.简述尿液形成的大致过程。过程与方法目标:1.通过对图片...
一.说教材1、教材分析:大凡在写景叙事中注入作家浓郁的主观情思的文章,语言才能神情飞动,意趣横生,倘若在情和景交融之...
下面是小编为大家精心编辑整理的初中语文说课稿,希望对你有所帮助,更多精彩内容,请点击上方相关栏目查看,谢谢!教材简...
Copyright © 2025 Duoxuexi.Com All Rights Reserved.
多学习 版权所有 粤ICP备20068283号